remove some warnings by using java 5 features

This commit is contained in:
David Blacka 2009-04-19 17:12:48 -04:00
parent c43169bc24
commit 1f647e3c77
9 changed files with 1571 additions and 1910 deletions

View File

@ -298,6 +298,14 @@ public class CaptiveValidator {
m.setStatus(SecurityStatus.SECURE);
}
private void validateReferral(SMessage message, SRRset key_rrset) {
}
private void validateCNAMEResponse(SMessage message, SRRset key_rrset) {
}
/**
* Given an "ANY" response -- a response that contains an answer to a
* qtype==ANY question, with answers. This consists of simply verifying all
@ -675,34 +683,38 @@ public class CaptiveValidator {
// }
public byte validateMessage(SMessage message) {
public byte validateMessage(SMessage message, Name zone) {
SRRset key_rrset = findKeys(message);
if (key_rrset == null) {
return SecurityStatus.BOGUS;
}
int subtype = ValUtils.classifyResponse(message);
ValUtils.ResponseType subtype = ValUtils.classifyResponse(message, zone);
switch (subtype) {
case ValUtils.POSITIVE:
case POSITIVE:
// log.trace("Validating a positive response");
validatePositiveResponse(message, key_rrset);
break;
case ValUtils.NODATA:
case REFERRAL:
validateReferral(message, key_rrset);
break;
case NODATA:
// log.trace("Validating a nodata response");
validateNodataResponse(message, key_rrset);
break;
case ValUtils.NAMEERROR:
case NAMEERROR:
// log.trace("Validating a nxdomain response");
validateNameErrorResponse(message, key_rrset);
break;
case ValUtils.CNAME:
case CNAME:
// log.trace("Validating a cname response");
// forward on to the special CNAME state for this.
// state.state = ValEventState.CNAME_STATE;
validateCNAMEResponse(message, key_rrset);
break;
case ValUtils.ANY:
case ANY:
// log.trace("Validating a postive ANY response");
validateAnyResponse(message, key_rrset);
break;

View File

@ -1,7 +1,5 @@
/*
* $Id$
*
* Copyright (c) 2005 VeriSign, Inc. All rights reserved.
* Copyright (c) 2009 VeriSign, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -56,7 +54,7 @@ public class DnsSecVerifier
* This is a mapping of DNSSEC algorithm numbers/private identifiers to JCA
* algorithm identifiers.
*/
private HashMap mAlgorithmMap;
private HashMap<Integer, AlgEntry> mAlgorithmMap;
private static class AlgEntry
{
@ -74,7 +72,7 @@ public class DnsSecVerifier
public DnsSecVerifier()
{
mAlgorithmMap = new HashMap();
mAlgorithmMap = new HashMap<Integer, AlgEntry>();
// set the default algorithm map.
mAlgorithmMap.put(new Integer(DNSSEC.RSAMD5), new AlgEntry("MD5withRSA",
@ -105,12 +103,9 @@ public class DnsSecVerifier
// For now, we just accept new identifiers for existing algoirthms.
// FIXME: handle private identifiers.
List aliases = Util.parseConfigPrefix(config, "dns.algorithm.");
for (Iterator i = aliases.iterator(); i.hasNext();)
{
Util.ConfigEntry entry = (Util.ConfigEntry) i.next();
List<Util.ConfigEntry> aliases = Util.parseConfigPrefix(config, "dns.algorithm.");
for (Util.ConfigEntry entry : aliases) {
Integer alg_alias = new Integer(Util.parseInt(entry.key, -1));
Integer alg_orig = new Integer(Util.parseInt(entry.value, -1));
@ -132,16 +127,14 @@ public class DnsSecVerifier
}
// for debugging purposes, log the entire algorithm map table.
for (Iterator i = mAlgorithmMap.keySet().iterator(); i.hasNext(); )
{
Integer alg = (Integer) i.next();
AlgEntry entry = (AlgEntry) mAlgorithmMap.get(alg);
// for (Integer alg : mAlgorithmMap.keySet()) {
// AlgEntry entry = mAlgorithmMap.get(alg);
// if (entry == null)
// log.warn("DNSSEC alg " + alg + " has a null entry!");
// else
// log.debug("DNSSEC alg " + alg + " maps to " + entry.jcaName
// + " (" + entry.dnssecAlg + ")");
}
// }
}
/**
@ -154,7 +147,8 @@ public class DnsSecVerifier
* @return A List contains a one or more DNSKEYRecord objects, or null if a
* matching DNSKEY could not be found.
*/
private List findKey(RRset dnskey_rrset, RRSIGRecord signature)
@SuppressWarnings("unchecked")
private List<DNSKEYRecord> findKey(RRset dnskey_rrset, RRSIGRecord signature)
{
if (!signature.getSigner().equals(dnskey_rrset.getName()))
{
@ -167,7 +161,7 @@ public class DnsSecVerifier
int keyid = signature.getFootprint();
int alg = signature.getAlgorithm();
List res = new ArrayList(dnskey_rrset.size());
List<DNSKEYRecord> res = new ArrayList<DNSKEYRecord>(dnskey_rrset.size());
for (Iterator i = dnskey_rrset.rrs(); i.hasNext();)
{
@ -325,7 +319,7 @@ public class DnsSecVerifier
byte result = checkSignature(rrset, sigrec);
if (result != SecurityStatus.SECURE) return result;
List keys = findKey(key_rrset, sigrec);
List<DNSKEYRecord> keys = findKey(key_rrset, sigrec);
if (keys == null)
{
@ -335,9 +329,7 @@ public class DnsSecVerifier
byte status = SecurityStatus.UNCHECKED;
for (Iterator i = keys.iterator(); i.hasNext();)
{
DNSKEYRecord key = (DNSKEYRecord) i.next();
for (DNSKEYRecord key : keys) {
status = verifySignature(rrset, sigrec, key);
if (status == SecurityStatus.SECURE) break;
@ -354,7 +346,8 @@ public class DnsSecVerifier
* @return SecurityStatus.SECURE if the rrest verified positively,
* SecurityStatus.BOGUS otherwise.
*/
public byte verify(RRset rrset, RRset key_rrset)
@SuppressWarnings("unchecked")
public byte verify(RRset rrset, RRset key_rrset)
{
Iterator i = rrset.sigs();
@ -386,7 +379,8 @@ public class DnsSecVerifier
* @param dnskey The DNSKEY to verify with.
* @return SecurityStatus.SECURE if the rrset verified, BOGUS otherwise.
*/
public byte verify(RRset rrset, DNSKEYRecord dnskey)
@SuppressWarnings("unchecked")
public byte verify(RRset rrset, DNSKEYRecord dnskey)
{
// Iterate over RRSIGS

File diff suppressed because it is too large Load Diff

View File

@ -36,369 +36,324 @@ import org.xbill.DNS.*;
/**
* This class represents a DNS message with resolver/validator state.
*/
public class SMessage
{
private Header mHeader;
public class SMessage {
private Header mHeader;
private Record mQuestion;
private OPTRecord mOPTRecord;
private List[] mSection;
private SecurityStatus mSecurityStatus;
private Record mQuestion;
private OPTRecord mOPTRecord;
private List<SRRset>[] mSection;
private SecurityStatus mSecurityStatus;
private static SRRset[] empty_srrset_array = new SRRset[0];
private static SRRset[] empty_srrset_array = new SRRset[0];
public SMessage(Header h)
{
mSection = new List[3];
mHeader = h;
mSecurityStatus = new SecurityStatus();
}
public SMessage(int id)
{
this(new Header(id));
}
public SMessage()
{
this(new Header(0));
}
public SMessage(Message m)
{
this(m.getHeader());
mQuestion = m.getQuestion();
mOPTRecord = m.getOPT();
for (int i = Section.ANSWER; i <= Section.ADDITIONAL; i++)
{
RRset[] rrsets = m.getSectionRRsets(i);
for (int j = 0; j < rrsets.length; j++)
{
addRRset(rrsets[j], i);
}
}
}
public Header getHeader()
{
return mHeader;
}
public void setHeader(Header h)
{
mHeader = h;
}
public void setQuestion(Record r)
{
mQuestion = r;
}
public Record getQuestion()
{
return mQuestion;
}
public Name getQName() {
return getQuestion().getName();
}
public int getQType() {
return getQuestion().getType();
}
public int getQClass() {
return getQuestion().getDClass();
}
public void setOPT(OPTRecord r)
{
mOPTRecord = r;
}
public OPTRecord getOPT()
{
return mOPTRecord;
}
public List getSectionList(int section)
{
if (section <= Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section.");
if (mSection[section - 1] == null)
{
mSection[section - 1] = new LinkedList();
@SuppressWarnings("unchecked")
public SMessage(Header h) {
mSection = (List<SRRset>[]) new List[3];
mHeader = h;
mSecurityStatus = new SecurityStatus();
}
return mSection[section - 1];
}
public void addRRset(SRRset srrset, int section)
{
if (section <= Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section");
if (srrset.getType() == Type.OPT)
{
mOPTRecord = (OPTRecord) srrset.first();
return;
public SMessage(int id) {
this(new Header(id));
}
List sectionList = getSectionList(section);
sectionList.add(srrset);
}
public void addRRset(RRset rrset, int section)
{
if (rrset instanceof SRRset)
{
addRRset((SRRset) rrset, section);
return;
public SMessage() {
this(new Header(0));
}
SRRset srrset = new SRRset(rrset);
addRRset(srrset, section);
}
public SMessage(Message m) {
this(m.getHeader());
mQuestion = m.getQuestion();
mOPTRecord = m.getOPT();
public void prependRRsets(List rrsets, int section)
{
if (section <= Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section");
for (int i = Section.ANSWER; i <= Section.ADDITIONAL; i++) {
RRset[] rrsets = m.getSectionRRsets(i);
List sectionList = getSectionList(section);
sectionList.addAll(0, rrsets);
}
public SRRset[] getSectionRRsets(int section)
{
List slist = getSectionList(section);
return (SRRset[]) slist.toArray(empty_srrset_array);
}
public SRRset[] getSectionRRsets(int section, int qtype)
{
List slist = getSectionList(section);
if (slist.size() == 0) return new SRRset[0];
ArrayList result = new ArrayList(slist.size());
for (Iterator i = slist.iterator(); i.hasNext();)
{
SRRset rrset = (SRRset) i.next();
if (rrset.getType() == qtype) result.add(rrset);
}
return (SRRset[]) result.toArray(empty_srrset_array);
}
public void deleteRRset(SRRset rrset, int section)
{
List slist = getSectionList(section);
if (slist.size() == 0) return;
slist.remove(rrset);
}
public void clear(int section)
{
if (section < Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section.");
if (section == Section.QUESTION)
{
mQuestion = null;
return;
}
if (section == Section.ADDITIONAL)
{
mOPTRecord = null;
}
mSection[section - 1] = null;
}
public void clear()
{
for (int s = Section.QUESTION; s <= Section.ADDITIONAL; s++)
{
clear(s);
}
}
public int getRcode()
{
// FIXME: might want to do what Message does and handle extended rcodes.
return mHeader.getRcode();
}
public int getStatus()
{
return mSecurityStatus.getStatus();
}
public void setStatus(byte status)
{
mSecurityStatus.setStatus(status);
}
public SecurityStatus getSecurityStatus()
{
return mSecurityStatus;
}
public void setSecurityStatus(SecurityStatus s)
{
if (s == null) return;
mSecurityStatus = s;
}
public Message getMessage()
{
// Generate our new message.
Message m = new Message(mHeader.getID());
// Convert the header
// We do this for two reasons: 1) setCount() is package scope, so we can't
// do that, and 2) setting the header on a message after creating the
// message frequently gets stuff out of sync, leading to malformed wire
// format messages.
Header h = m.getHeader();
h.setOpcode(mHeader.getOpcode());
h.setRcode(mHeader.getRcode());
for (int i = 0; i < 16; i++)
{
if (Flags.isFlag(i)) {
if (mHeader.getFlag(i)) {
h.setFlag(i);
} else {
h.unsetFlag(i);
}
}
}
// Add all the records. -- this will set the counts correctly in the
// message header.
if (mQuestion != null)
{
m.addRecord(mQuestion, Section.QUESTION);
}
for (int sec = Section.ANSWER; sec <= Section.ADDITIONAL; sec++)
{
List slist = getSectionList(sec);
for (Iterator i = slist.iterator(); i.hasNext();)
{
SRRset rrset = (SRRset) i.next();
for (Iterator j = rrset.rrs(); j.hasNext();)
{
m.addRecord((Record) j.next(), sec);
for (int j = 0; j < rrsets.length; j++) {
addRRset(rrsets[j], i);
}
}
for (Iterator j = rrset.sigs(); j.hasNext();)
{
m.addRecord((Record) j.next(), sec);
}
public Header getHeader() {
return mHeader;
}
public void setHeader(Header h) {
mHeader = h;
}
public void setQuestion(Record r) {
mQuestion = r;
}
public Record getQuestion() {
return mQuestion;
}
public Name getQName() {
return getQuestion().getName();
}
public int getQType() {
return getQuestion().getType();
}
public int getQClass() {
return getQuestion().getDClass();
}
public void setOPT(OPTRecord r) {
mOPTRecord = r;
}
public OPTRecord getOPT() {
return mOPTRecord;
}
public List<SRRset> getSectionList(int section) {
if (section <= Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section.");
if (mSection[section - 1] == null) {
mSection[section - 1] = new LinkedList<SRRset>();
}
}
return (List<SRRset>) mSection[section - 1];
}
if (mOPTRecord != null)
{
m.addRecord(mOPTRecord, Section.ADDITIONAL);
public void addRRset(SRRset srrset, int section) {
if (section <= Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section");
if (srrset.getType() == Type.OPT) {
mOPTRecord = (OPTRecord) srrset.first();
return;
}
List<SRRset> sectionList = getSectionList(section);
sectionList.add(srrset);
}
return m;
}
public void addRRset(RRset rrset, int section) {
if (rrset instanceof SRRset) {
addRRset((SRRset) rrset, section);
return;
}
public int getCount(int section)
{
if (section == Section.QUESTION)
{
return mQuestion == null ? 0 : 1;
}
List sectionList = getSectionList(section);
if (sectionList == null) return 0;
if (sectionList.size() == 0) return 0;
int count = 0;
for (Iterator i = sectionList.iterator(); i.hasNext(); )
{
SRRset sr = (SRRset) i.next();
count += sr.totalSize();
}
return count;
}
public String toString()
{
return getMessage().toString();
}
/**
* Find a specific (S)RRset in a given section.
*
* @param name the name of the RRset.
* @param type the type of the RRset.
* @param dclass the class of the RRset.
* @param section the section to look in (ANSWER -> ADDITIONAL)
*
* @return The SRRset if found, null otherwise.
*/
public SRRset findRRset(Name name, int type, int dclass, int section)
{
if (section <= Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section.");
SRRset[] rrsets = getSectionRRsets(section);
for (int i = 0; i < rrsets.length; i++)
{
if (rrsets[i].getName().equals(name) && rrsets[i].getType() == type
&& rrsets[i].getDClass() == dclass)
{
return rrsets[i];
}
SRRset srrset = new SRRset(rrset);
addRRset(srrset, section);
}
return null;
}
public void prependRRsets(List<SRRset> rrsets, int section) {
if (section <= Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section");
/**
* Find an "answer" RRset. This will look for RRsets in the ANSWER section
* that match the <qname,qtype,qclass>, taking into consideration CNAMEs.
*
* @param qname The starting search name.
* @param qtype The search type.
* @param qclass The search class.
*
* @return a SRRset matching the query. This SRRset may have a different
* name from qname, due to following a CNAME chain.
*/
public SRRset findAnswerRRset(Name qname, int qtype, int qclass)
{
SRRset[] srrsets = getSectionRRsets(Section.ANSWER);
for (int i = 0; i < srrsets.length; i++)
{
if (srrsets[i].getName().equals(qname)
&& srrsets[i].getType() == Type.CNAME)
{
CNAMERecord cname = (CNAMERecord) srrsets[i].first();
qname = cname.getTarget();
continue;
}
if (srrsets[i].getName().equals(qname) && srrsets[i].getType() == qtype
&& srrsets[i].getDClass() == qclass)
{
return srrsets[i];
}
List<SRRset> sectionList = getSectionList(section);
sectionList.addAll(0, rrsets);
}
return null;
}
public SRRset[] getSectionRRsets(int section) {
List<SRRset> slist = getSectionList(section);
return (SRRset[]) slist.toArray(empty_srrset_array);
}
public SRRset[] getSectionRRsets(int section, int qtype) {
List<SRRset> slist = getSectionList(section);
if (slist.size() == 0) return new SRRset[0];
ArrayList<SRRset> result = new ArrayList<SRRset>(slist.size());
for (SRRset rrset : slist) {
if (rrset.getType() == qtype) result.add(rrset);
}
return (SRRset[]) result.toArray(empty_srrset_array);
}
public void deleteRRset(SRRset rrset, int section) {
List<SRRset> slist = getSectionList(section);
if (slist.size() == 0) return;
slist.remove(rrset);
}
public void clear(int section) {
if (section < Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section.");
if (section == Section.QUESTION) {
mQuestion = null;
return;
}
if (section == Section.ADDITIONAL) {
mOPTRecord = null;
}
mSection[section - 1] = null;
}
public void clear() {
for (int s = Section.QUESTION; s <= Section.ADDITIONAL; s++) {
clear(s);
}
}
public int getRcode() {
// FIXME: might want to do what Message does and handle extended rcodes.
return mHeader.getRcode();
}
public int getStatus() {
return mSecurityStatus.getStatus();
}
public void setStatus(byte status) {
mSecurityStatus.setStatus(status);
}
public SecurityStatus getSecurityStatus() {
return mSecurityStatus;
}
public void setSecurityStatus(SecurityStatus s) {
if (s == null) return;
mSecurityStatus = s;
}
public Message getMessage() {
// Generate our new message.
Message m = new Message(mHeader.getID());
// Convert the header
// We do this for two reasons: 1) setCount() is package scope, so we
// can't do that, and 2) setting the header on a message after creating
// the message frequently gets stuff out of sync, leading to malformed
// wire format messages.
Header h = m.getHeader();
h.setOpcode(mHeader.getOpcode());
h.setRcode(mHeader.getRcode());
for (int i = 0; i < 16; i++) {
if (Flags.isFlag(i)) {
if (mHeader.getFlag(i)) {
h.setFlag(i);
} else {
h.unsetFlag(i);
}
}
}
// Add all the records. -- this will set the counts correctly in the
// message header.
if (mQuestion != null) {
m.addRecord(mQuestion, Section.QUESTION);
}
for (int sec = Section.ANSWER; sec <= Section.ADDITIONAL; sec++) {
List<SRRset> slist = getSectionList(sec);
for (SRRset rrset : slist) {
for (Iterator<Record> j = rrset.rrs(); j.hasNext(); ) {
m.addRecord(j.next(), sec);
}
for (Iterator<RRSIGRecord> j = rrset.sigs(); j.hasNext(); ) {
m.addRecord(j.next(), sec);
}
}
}
if (mOPTRecord != null) {
m.addRecord(mOPTRecord, Section.ADDITIONAL);
}
return m;
}
public int getCount(int section) {
if (section == Section.QUESTION) {
return mQuestion == null ? 0 : 1;
}
List<SRRset> sectionList = getSectionList(section);
if (sectionList == null) return 0;
if (sectionList.size() == 0) return 0;
int count = 0;
for (SRRset sr : sectionList) {
count += sr.totalSize();
}
return count;
}
public String toString() {
return getMessage().toString();
}
/**
* Find a specific (S)RRset in a given section.
*
* @param name
* the name of the RRset.
* @param type
* the type of the RRset.
* @param dclass
* the class of the RRset.
* @param section
* the section to look in (ANSWER -> ADDITIONAL)
*
* @return The SRRset if found, null otherwise.
*/
public SRRset findRRset(Name name, int type, int dclass, int section) {
if (section <= Section.QUESTION || section > Section.ADDITIONAL)
throw new IllegalArgumentException("Invalid section.");
SRRset[] rrsets = getSectionRRsets(section);
for (int i = 0; i < rrsets.length; i++) {
if (rrsets[i].getName().equals(name) && rrsets[i].getType() == type
&& rrsets[i].getDClass() == dclass) {
return rrsets[i];
}
}
return null;
}
/**
* Find an "answer" RRset. This will look for RRsets in the ANSWER section
* that match the <qname,qtype,qclass>, taking into consideration CNAMEs.
*
* @param qname
* The starting search name.
* @param qtype
* The search type.
* @param qclass
* The search class.
*
* @return a SRRset matching the query. This SRRset may have a different
* name from qname, due to following a CNAME chain.
*/
public SRRset findAnswerRRset(Name qname, int qtype, int qclass) {
SRRset[] srrsets = getSectionRRsets(Section.ANSWER);
for (int i = 0; i < srrsets.length; i++) {
if (srrsets[i].getName().equals(qname)
&& srrsets[i].getType() == Type.CNAME) {
CNAMERecord cname = (CNAMERecord) srrsets[i].first();
qname = cname.getTarget();
continue;
}
if (srrsets[i].getName().equals(qname)
&& srrsets[i].getType() == qtype
&& srrsets[i].getDClass() == qclass) {
return srrsets[i];
}
}
return null;
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2005 VeriSign. All rights reserved.
* Copyright (c) 2009 VeriSign. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@ -34,152 +34,103 @@ import org.xbill.DNS.*;
/**
* A version of the RRset class overrides the standard security status.
*/
public class SRRset extends RRset
{
private SecurityStatus mSecurityStatus;
/** Create a new, blank SRRset. */
public SRRset()
{
super();
mSecurityStatus = new SecurityStatus();
}
public class SRRset extends RRset {
private SecurityStatus mSecurityStatus;
/**
* Create a new SRRset from an existing RRset. This SRRset will contain that
* same internal Record objects as the original RRset.
*/
@SuppressWarnings("unchecked") // org.xbill.DNS.RRset isn't typesafe-aware.
public SRRset(RRset r)
{
this();
for (Iterator i = r.rrs(); i.hasNext();)
{
addRR((Record) i.next());
/** Create a new, blank SRRset. */
public SRRset() {
super();
mSecurityStatus = new SecurityStatus();
}
for (Iterator i = r.sigs(); i.hasNext();)
{
addRR((Record) i.next());
}
}
/**
* Clone this SRRset, giving the copy a new TTL. The copy is independent
* from the original except for the security status.
*
* @param withNewTTL The new TTL to apply to the RRset. This applies to
* contained RRsig records as well.
* @return The cloned SRRset.
*/
// public SRRset cloneSRRset(long withNewTTL)
// {
// SRRset nr = new SRRset();
//
// for (Iterator i = rrs(); i.hasNext();)
// {
// nr.addRR(((Record) i.next()).withTTL(withNewTTL));
// }
// for (Iterator i = sigs(); i.hasNext();)
// {
// nr.addRR(((Record) i.next()).withTTL(withNewTTL));
// }
//
// nr.mSecurityStatus = mSecurityStatus;
//
// return nr;
// }
public SRRset cloneSRRsetNoSigs()
{
SRRset nr = new SRRset();
for (Iterator i = rrs(); i.hasNext();)
{
// NOTE: should this clone the records as well?
nr.addRR((Record) i.next());
}
// Do not copy the SecurityStatus reference
return nr;
}
/**
* Return the current security status (generally: UNCHECKED, BOGUS, or
* SECURE).
*/
public int getSecurity()
{
return getSecurityStatus();
}
/**
* Create a new SRRset from an existing RRset. This SRRset will contain that
* same internal Record objects as the original RRset.
*/
@SuppressWarnings("unchecked")
// org.xbill.DNS.RRset isn't typesafe-aware.
public SRRset(RRset r) {
this();
/**
* Return the current security status (generally: UNCHECKED, BOGUS, or
* SECURE).
*/
public int getSecurityStatus()
{
return mSecurityStatus.getStatus();
}
for (Iterator i = r.rrs(); i.hasNext();) {
addRR((Record) i.next());
}
/**
* Set the current security status for this SRRset. This status will be
* shared amongst all copies of this SRRset (created with cloneSRRset())
*/
public void setSecurityStatus(byte status)
{
mSecurityStatus.setStatus(status);
}
for (Iterator i = r.sigs(); i.hasNext();) {
addRR((Record) i.next());
}
}
public int totalSize() {
int num_sigs = 0;
for (Iterator i = sigs(); i.hasNext(); ) {
num_sigs++;
}
return size() + num_sigs;
}
/**
* @return The total number of records (data + sigs) in the SRRset.
*/
public int getNumRecords()
{
return totalSize();
}
/**
* Return the current security status (generally: UNCHECKED, BOGUS, or
* SECURE).
*/
public int getSecurity() {
return getSecurityStatus();
}
public RRSIGRecord firstSig() {
for (Iterator i = sigs(); i.hasNext(); ) {
return (RRSIGRecord) i.next();
}
return null;
}
/**
* @return true if this RRset has RRSIG records that cover data records.
* (i.e., RRSIG SRRsets return false)
*/
public boolean isSigned()
{
if (getType() == Type.RRSIG) return false;
return firstSig() != null;
}
/**
* Return the current security status (generally: UNCHECKED, BOGUS, or
* SECURE).
*/
public byte getSecurityStatus() {
return mSecurityStatus.getStatus();
}
/**
* @return The "signer" name for this SRRset, if signed, or null if not.
*/
public Name getSignerName()
{
RRSIGRecord sig = (RRSIGRecord) firstSig();
if (sig == null) return null;
return sig.getSigner();
}
// public void setTTL(long ttl)
// {
// if (ttl < 0)
// {
// throw new IllegalArgumentException("ttl can't be less than zero, stupid! was " + ttl);
// }
// super.setTTL(ttl);
// }
/**
* Set the current security status for this SRRset. This status will be
* shared amongst all copies of this SRRset (created with cloneSRRset())
*/
public void setSecurityStatus(byte status) {
mSecurityStatus.setStatus(status);
}
public Iterator<Record> rrs() {
return (Iterator<Record>) rrs();
}
public Iterator<RRSIGRecord> sigs() {
return (Iterator<RRSIGRecord>) sigs();
}
public int totalSize() {
int num_sigs = 0;
for (Iterator<RRSIGRecord> i = sigs(); i.hasNext();) {
num_sigs++;
}
return size() + num_sigs;
}
/**
* @return The total number of records (data + sigs) in the SRRset.
*/
public int getNumRecords() {
return totalSize();
}
public RRSIGRecord firstSig() {
for (Iterator<RRSIGRecord> i = sigs(); i.hasNext();) {
return i.next();
}
return null;
}
/**
* @return true if this RRset has RRSIG records that cover data records.
* (i.e., RRSIG SRRsets return false)
*/
public boolean isSigned() {
if (getType() == Type.RRSIG) return false;
return firstSig() != null;
}
/**
* @return The "signer" name for this SRRset, if signed, or null if not.
*/
public Name getSignerName() {
RRSIGRecord sig = (RRSIGRecord) firstSig();
if (sig == null) return null;
return sig.getSigner();
}
}

View File

@ -47,428 +47,430 @@ import org.xbill.DNS.Name;
import org.xbill.DNS.RRSIGRecord;
import org.xbill.DNS.RRset;
import org.xbill.DNS.Record;
import org.xbill.DNS.utils.base64;
/**
* This class contains a bunch of utility methods that are generally useful in
* signing and verifying rrsets.
*
* @author David Blacka (original)
* @author $Author$
* @version $Revision$
*/
public class SignUtils
{
public class SignUtils {
/**
* This class implements a basic comparitor for byte arrays. It is primarily
* useful for comparing RDATA portions of DNS records in doing DNSSEC
* canonical ordering.
*
* @author David Blacka (original)
*/
public static class ByteArrayComparator implements Comparator
{
private int mOffset = 0;
private boolean mDebug = false;
/**
* This class implements a basic comparator for byte arrays. It is primarily
* useful for comparing RDATA portions of DNS records in doing DNSSEC
* canonical ordering.
*/
public static class ByteArrayComparator implements Comparator<byte[]> {
private int mOffset = 0;
private boolean mDebug = false;
public ByteArrayComparator()
{
}
public ByteArrayComparator(int offset, boolean debug)
{
mOffset = offset;
mDebug = debug;
}
public int compare(Object o1, Object o2) throws ClassCastException
{
byte[] b1 = (byte[]) o1;
byte[] b2 = (byte[]) o2;
for (int i = mOffset; i < b1.length && i < b2.length; i++)
{
if (b1[i] != b2[i])
{
if (mDebug)
{
System.out.println("offset " + i + " differs (this is "
+ (i - mOffset) + " bytes in from our offset.)");
}
return (b1[i] & 0xFF) - (b2[i] & 0xFF);
public ByteArrayComparator() {
}
}
return b1.length - b2.length;
}
}
public ByteArrayComparator(int offset, boolean debug) {
mOffset = offset;
mDebug = debug;
}
// private static final int DSA_SIGNATURE_LENGTH = 20;
private static final int ASN1_INT = 0x02;
private static final int ASN1_SEQ = 0x30;
public int compare(byte[] b1, byte[] b2) throws ClassCastException {
for (int i = mOffset; i < b1.length && i < b2.length; i++) {
if (b1[i] != b2[i]) {
if (mDebug) {
System.out.println("offset " + i + " differs (this is "
+ (i - mOffset)
+ " bytes in from our offset.)");
}
return (b1[i] & 0xFF) - (b2[i] & 0xFF);
}
}
public static final int RR_NORMAL = 0;
public static final int RR_DELEGATION = 1;
public static final int RR_GLUE = 2;
public static final int RR_INVALID = 3;
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rrset the RRset being signed.
* @param signer the name of the signing key
* @param alg the algorithm of the signing key
* @param keyid the keyid (or footprint) of the signing key
* @param start the SIG inception time.
* @param expire the SIG expiration time.
* @param sig_ttl the TTL of the resulting SIG record.
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, Name signer,
int alg, int keyid, Date start, Date expire, long sig_ttl)
{
return new RRSIGRecord(rrset.getName(), rrset.getDClass(), sig_ttl, rrset
.getType(), alg, rrset.getTTL(), expire, start, keyid, signer, null);
}
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rrset the RRset being signed.
* @param key the public KEY RR counterpart to the key being used to sign
* the RRset
* @param start the SIG inception time.
* @param expire the SIG expiration time.
* @param sig_ttl the TTL of the resulting SIG record.
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, DNSKEYRecord key,
Date start, Date expire, long sig_ttl)
{
return generatePreRRSIG(rrset, key.getName(), key.getAlgorithm(), key
.getFootprint(), start, expire, sig_ttl);
}
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rec the DNS record being signed (forming an entire RRset).
* @param key the public KEY RR counterpart to the key signing the record.
* @param start the SIG inception time.
* @param expire the SIG expiration time.
* @param sig_ttl the TTL of the result SIG record.
* @return a prototype signature based on the Record and key information.
*/
public static RRSIGRecord generatePreRRSIG(Record rec, DNSKEYRecord key,
Date start, Date expire, long sig_ttl)
{
return new RRSIGRecord(rec.getName(), rec.getDClass(), sig_ttl, rec
.getType(), key.getAlgorithm(), rec.getTTL(), expire, start, key
.getFootprint(), key.getName(), null);
}
/**
* Generate the binary image of the prototype SIG RR.
*
* @param presig the SIG RR prototype.
* @return the RDATA portion of the prototype SIG record. This forms the
* first part of the data to be signed.
*/
private static byte[] generatePreSigRdata(RRSIGRecord presig)
{
// Generate the binary image;
DNSOutput image = new DNSOutput();
// precalc some things
int start_time = (int) (presig.getTimeSigned().getTime() / 1000);
int expire_time = (int) (presig.getExpire().getTime() / 1000);
Name signer = presig.getSigner();
// first write out the partial SIG record (this is the SIG RDATA
// minus the actual signature.
image.writeU16(presig.getTypeCovered());
image.writeU8(presig.getAlgorithm());
image.writeU8(presig.getLabels());
image.writeU32((int) presig.getOrigTTL());
image.writeU32(expire_time);
image.writeU32(start_time);
image.writeU16(presig.getFootprint());
image.writeByteArray(signer.toWireCanonical());
return image.toByteArray();
}
/**
* Calculate the canonical wire line format of the RRset.
*
* @param rrset the RRset to convert.
* @param ttl the TTL to use when canonicalizing -- this is generally the
* TTL of the signature if there is a pre-existing signature. If
* not it is just the ttl of the rrset itself.
* @param labels the labels field of the signature, or 0.
* @return the canonical wire line format of the rrset. This is the second
* part of data to be signed.
*/
public static byte[] generateCanonicalRRsetData(RRset rrset, long ttl,
int labels)
{
DNSOutput image = new DNSOutput();
if (ttl == 0) ttl = rrset.getTTL();
Name n = rrset.getName();
if (labels == 0)
{
labels = n.labels();
}
else
{
// correct for Name()'s conception of label count.
labels++;
}
boolean wildcardName = false;
if (n.labels() != labels)
{
n = n.wild(n.labels() - labels);
wildcardName = true;
// log.trace("Detected wildcard expansion: " + rrset.getName() + " changed to " + n);
return b1.length - b2.length;
}
}
// now convert load the wire format records in the RRset into a
// list of byte arrays.
ArrayList canonical_rrs = new ArrayList();
for (Iterator i = rrset.rrs(); i.hasNext();)
{
Record r = (Record) i.next();
if (r.getTTL() != ttl || wildcardName)
{
// If necessary, we need to create a new record with a new ttl or ownername.
// In the TTL case, this avoids changing the ttl in the response.
r = Record.newRecord(n, r.getType(), r.getDClass(), ttl, r
.rdataToWireCanonical());
}
byte[] wire_fmt = r.toWireCanonical();
canonical_rrs.add(wire_fmt);
// private static final int DSA_SIGNATURE_LENGTH = 20;
private static final int ASN1_INT = 0x02;
private static final int ASN1_SEQ = 0x30;
public static final int RR_NORMAL = 0;
public static final int RR_DELEGATION = 1;
public static final int RR_GLUE = 2;
public static final int RR_INVALID = 3;
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rrset
* the RRset being signed.
* @param signer
* the name of the signing key
* @param alg
* the algorithm of the signing key
* @param keyid
* the keyid (or footprint) of the signing key
* @param start
* the SIG inception time.
* @param expire
* the SIG expiration time.
* @param sig_ttl
* the TTL of the resulting SIG record.
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, Name signer,
int alg, int keyid, Date start,
Date expire, long sig_ttl) {
return new RRSIGRecord(rrset.getName(), rrset.getDClass(), sig_ttl,
rrset.getType(), alg, rrset.getTTL(), expire, start, keyid,
signer, null);
}
// put the records into the correct ordering.
// Caculate the offset where the RDATA begins (we have to skip
// past the length byte)
int offset = rrset.getName().toWireCanonical().length + 10;
ByteArrayComparator bac = new ByteArrayComparator(offset, false);
Collections.sort(canonical_rrs, bac);
for (Iterator i = canonical_rrs.iterator(); i.hasNext();)
{
byte[] wire_fmt_rec = (byte[]) i.next();
image.writeByteArray(wire_fmt_rec);
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rrset
* the RRset being signed.
* @param key
* the public KEY RR counterpart to the key being used to sign
* the RRset
* @param start
* the SIG inception time.
* @param expire
* the SIG expiration time.
* @param sig_ttl
* the TTL of the resulting SIG record.
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, DNSKEYRecord key,
Date start, Date expire,
long sig_ttl) {
return generatePreRRSIG(rrset, key.getName(), key.getAlgorithm(),
key.getFootprint(), start, expire, sig_ttl);
}
return image.toByteArray();
}
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
* @param rrset the RRset to be signed.
* @param presig a prototype SIG RR created using the same RRset.
* @return a block of data ready to be signed.
*/
public static byte[] generateSigData(RRset rrset, RRSIGRecord presig)
throws IOException
{
byte[] rrset_data = generateCanonicalRRsetData(rrset, presig.getOrigTTL(), presig.getLabels());
return generateSigData(rrset_data, presig);
}
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
* @param rrset_data the RRset converted into canonical wire line format (as
* per the canonicalization rules in RFC 2535).
* @param presig the prototype signature based on the same RRset represented
* in <code>rrset_data</code>.
* @return a block of data ready to be signed.
*/
public static byte[] generateSigData(byte[] rrset_data, RRSIGRecord presig)
throws IOException
{
byte[] sig_rdata = generatePreSigRdata(presig);
ByteArrayOutputStream image = new ByteArrayOutputStream(sig_rdata.length
+ rrset_data.length);
image.write(sig_rdata);
image.write(rrset_data);
return image.toByteArray();
}
/**
* Given the acutal signature an the prototype signature, combine them and
* return the fully formed SIGRecord.
*
* @param signature the cryptographic signature, in DNSSEC format.
* @param presig the prototype SIG RR to add the signature to.
* @return the fully formed SIG RR.
*/
public static RRSIGRecord generateRRSIG(byte[] signature, RRSIGRecord presig)
{
return new RRSIGRecord(presig.getName(), presig.getDClass(), presig
.getTTL(), presig.getTypeCovered(), presig.getAlgorithm(), presig
.getOrigTTL(), presig.getExpire(), presig.getTimeSigned(), presig
.getFootprint(), presig.getSigner(), signature);
}
/**
* Converts from a RFC 2536 formatted DSA signature to a JCE (ASN.1)
* formatted signature.
*
* <p>
* ASN.1 format = ASN1_SEQ . seq_length . ASN1_INT . Rlength . R . ANS1_INT .
* Slength . S
* </p>
*
* The integers R and S may have a leading null byte to force the integer
* positive.
*
* @param signature the RFC 2536 formatted DSA signature.
* @return The ASN.1 formatted DSA signature.
* @throws SignatureException if there was something wrong with the RFC 2536
* formatted signature.
*/
public static byte[] convertDSASignature(byte[] signature)
throws SignatureException
{
if (signature.length != 41)
throw new SignatureException("RFC 2536 signature not expected length.");
byte r_pad = 0;
byte s_pad = 0;
// handle initial null byte padding.
if (signature[1] < 0) r_pad++;
if (signature[21] < 0) s_pad++;
// ASN.1 length = R length + S length + (2 + 2 + 2), where each 2
// is for a ASN.1 type-length byte pair of which there are three
// (SEQ, INT, INT).
byte sig_length = (byte) (40 + r_pad + s_pad + 6);
byte sig[] = new byte[sig_length];
byte pos = 0;
sig[pos++] = ASN1_SEQ;
sig[pos++] = (byte) (sig_length - 2); // all but the SEQ type+length.
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + r_pad);
// copy the value of R, leaving a null byte if necessary
if (r_pad == 1) sig[pos++] = 0;
System.arraycopy(signature, 1, sig, pos, 20);
pos += 20;
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + s_pad);
// copy the value of S, leaving a null byte if necessary
if (s_pad == 1) sig[pos++] = 0;
System.arraycopy(signature, 21, sig, pos, 20);
return sig;
}
/**
* Converts from a JCE (ASN.1) formatted DSA signature to a RFC 2536
* compliant signature.
*
* <p>
* rfc2536 format = T . R . S
* </p>
*
* where T is a number between 0 and 8, which is based on the DSA key
* length, and R & S are formatted to be exactly 20 bytes each (no leading
* null bytes).
*
* @param params the DSA parameters associated with the DSA key used to
* generate the signature.
* @param signature the ASN.1 formatted DSA signature.
* @return a RFC 2536 formatted DSA signature.
* @throws SignatureException if something is wrong with the ASN.1 format.
*/
public static byte[] convertDSASignature(DSAParams params, byte[] signature)
throws SignatureException
{
if (signature[0] != ASN1_SEQ || signature[2] != ASN1_INT)
{
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT");
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rec
* the DNS record being signed (forming an entire RRset).
* @param key
* the public KEY RR counterpart to the key signing the record.
* @param start
* the SIG inception time.
* @param expire
* the SIG expiration time.
* @param sig_ttl
* the TTL of the result SIG record.
* @return a prototype signature based on the Record and key information.
*/
public static RRSIGRecord generatePreRRSIG(Record rec, DNSKEYRecord key,
Date start, Date expire,
long sig_ttl) {
return new RRSIGRecord(rec.getName(), rec.getDClass(), sig_ttl,
rec.getType(), key.getAlgorithm(), rec.getTTL(), expire, start,
key.getFootprint(), key.getName(), null);
}
byte r_pad = (byte) (signature[3] - 20);
/**
* Generate the binary image of the prototype SIG RR.
*
* @param presig
* the SIG RR prototype.
* @return the RDATA portion of the prototype SIG record. This forms the
* first part of the data to be signed.
*/
private static byte[] generatePreSigRdata(RRSIGRecord presig) {
// Generate the binary image;
DNSOutput image = new DNSOutput();
if (signature[24 + r_pad] != ASN1_INT)
{
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT, INT");
// precalculate some things
int start_time = (int) (presig.getTimeSigned().getTime() / 1000);
int expire_time = (int) (presig.getExpire().getTime() / 1000);
Name signer = presig.getSigner();
// first write out the partial SIG record (this is the SIG RDATA
// minus the actual signature.
image.writeU16(presig.getTypeCovered());
image.writeU8(presig.getAlgorithm());
image.writeU8(presig.getLabels());
image.writeU32((int) presig.getOrigTTL());
image.writeU32(expire_time);
image.writeU32(start_time);
image.writeU16(presig.getFootprint());
image.writeByteArray(signer.toWireCanonical());
return image.toByteArray();
}
// log.trace("(start) ASN.1 DSA Sig:\n" + base64.toString(signature));
/**
* Calculate the canonical wire line format of the RRset.
*
* @param rrset
* the RRset to convert.
* @param ttl
* the TTL to use when canonicalizing -- this is generally the
* TTL of the signature if there is a pre-existing signature. If
* not it is just the ttl of the rrset itself.
* @param labels
* the labels field of the signature, or 0.
* @return the canonical wire line format of the rrset. This is the second
* part of data to be signed.
*/
@SuppressWarnings("unchecked")
public static byte[] generateCanonicalRRsetData(RRset rrset, long ttl,
int labels) {
DNSOutput image = new DNSOutput();
byte s_pad = (byte) (signature[25 + r_pad] - 20);
if (ttl == 0) ttl = rrset.getTTL();
Name n = rrset.getName();
if (labels == 0) {
labels = n.labels();
} else {
// correct for Name()'s conception of label count.
labels++;
}
boolean wildcardName = false;
if (n.labels() != labels) {
n = n.wild(n.labels() - labels);
wildcardName = true;
// log.trace("Detected wildcard expansion: " + rrset.getName() +
// " changed to " + n);
}
byte[] sig = new byte[41]; // all rfc2536 signatures are 41 bytes.
// now convert the wire format records in the RRset into a
// list of byte arrays.
ArrayList<byte[]> canonical_rrs = new ArrayList<byte[]>();
for (Iterator i = rrset.rrs(); i.hasNext();) {
Record r = (Record) i.next();
if (r.getTTL() != ttl || wildcardName) {
// If necessary, we need to create a new record with a new ttl
// or ownername.
// In the TTL case, this avoids changing the ttl in the
// response.
r = Record.newRecord(n, r.getType(), r.getDClass(), ttl,
r.rdataToWireCanonical());
}
byte[] wire_fmt = r.toWireCanonical();
canonical_rrs.add(wire_fmt);
}
// Calculate T:
sig[0] = (byte) ((params.getP().bitLength() - 512) / 64);
// put the records into the correct ordering.
// Calculate the offset where the RDATA begins (we have to skip
// past the length byte)
// copy R value
if (r_pad >= 0)
{
System.arraycopy(signature, 4 + r_pad, sig, 1, 20);
}
else
{
// R is shorter than 20 bytes, so right justify the number
// (r_pad is negative here, remember?).
Arrays.fill(sig, 1, 1 - r_pad, (byte) 0);
System.arraycopy(signature, 4, sig, 1 - r_pad, 20 + r_pad);
int offset = rrset.getName().toWireCanonical().length + 10;
ByteArrayComparator bac = new ByteArrayComparator(offset, false);
Collections.sort(canonical_rrs, bac);
for (Iterator<byte[]> i = canonical_rrs.iterator(); i.hasNext();) {
byte[] wire_fmt_rec = i.next();
image.writeByteArray(wire_fmt_rec);
}
return image.toByteArray();
}
// copy S value
if (s_pad >= 0)
{
System.arraycopy(signature, 26 + r_pad + s_pad, sig, 21, 20);
}
else
{
// S is shorter than 20 bytes, so right justify the number
// (s_pad is negative here).
Arrays.fill(sig, 21, 21 - s_pad, (byte) 0);
System.arraycopy(signature, 26 + r_pad, sig, 21 - s_pad, 20 + s_pad);
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
* @param rrset
* the RRset to be signed.
* @param presig
* a prototype SIG RR created using the same RRset.
* @return a block of data ready to be signed.
*/
public static byte[] generateSigData(RRset rrset, RRSIGRecord presig)
throws IOException {
byte[] rrset_data = generateCanonicalRRsetData(rrset,
presig.getOrigTTL(),
presig.getLabels());
return generateSigData(rrset_data, presig);
}
// if (r_pad < 0 || s_pad < 0)
// {
// log.trace("(finish ***) RFC 2536 DSA Sig:\n" + base64.toString(sig));
//
// }
// else
// {
// log.trace("(finish) RFC 2536 DSA Sig:\n" + base64.toString(sig));
// }
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
* @param rrset_data
* the RRset converted into canonical wire line format (as per
* the canonicalization rules in RFC 2535).
* @param presig
* the prototype signature based on the same RRset represented in
* <code>rrset_data</code>.
* @return a block of data ready to be signed.
*/
public static byte[] generateSigData(byte[] rrset_data, RRSIGRecord presig)
throws IOException {
byte[] sig_rdata = generatePreSigRdata(presig);
return sig;
}
ByteArrayOutputStream image = new ByteArrayOutputStream(
sig_rdata.length + rrset_data.length);
image.write(sig_rdata);
image.write(rrset_data);
return image.toByteArray();
}
/**
* Given the actual signature and the prototype signature, combine them and
* return the fully formed RRSIGRecord.
*
* @param signature
* the cryptographic signature, in DNSSEC format.
* @param presig
* the prototype RRSIG RR to add the signature to.
* @return the fully formed RRSIG RR.
*/
public static RRSIGRecord generateRRSIG(byte[] signature, RRSIGRecord presig) {
return new RRSIGRecord(presig.getName(), presig.getDClass(),
presig.getTTL(), presig.getTypeCovered(),
presig.getAlgorithm(), presig.getOrigTTL(), presig.getExpire(),
presig.getTimeSigned(), presig.getFootprint(),
presig.getSigner(), signature);
}
/**
* Converts from a RFC 2536 formatted DSA signature to a JCE (ASN.1)
* formatted signature.
*
* <p>
* ASN.1 format = ASN1_SEQ . seq_length . ASN1_INT . Rlength . R . ANS1_INT
* . Slength . S
* </p>
*
* The integers R and S may have a leading null byte to force the integer
* positive.
*
* @param signature
* the RFC 2536 formatted DSA signature.
* @return The ASN.1 formatted DSA signature.
* @throws SignatureException
* if there was something wrong with the RFC 2536 formatted
* signature.
*/
public static byte[] convertDSASignature(byte[] signature)
throws SignatureException {
if (signature.length != 41)
throw new SignatureException(
"RFC 2536 signature not expected length.");
byte r_pad = 0;
byte s_pad = 0;
// handle initial null byte padding.
if (signature[1] < 0) r_pad++;
if (signature[21] < 0) s_pad++;
// ASN.1 length = R length + S length + (2 + 2 + 2), where each 2
// is for a ASN.1 type-length byte pair of which there are three
// (SEQ, INT, INT).
byte sig_length = (byte) (40 + r_pad + s_pad + 6);
byte sig[] = new byte[sig_length];
byte pos = 0;
sig[pos++] = ASN1_SEQ;
sig[pos++] = (byte) (sig_length - 2); // all but the SEQ type+length.
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + r_pad);
// copy the value of R, leaving a null byte if necessary
if (r_pad == 1) sig[pos++] = 0;
System.arraycopy(signature, 1, sig, pos, 20);
pos += 20;
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + s_pad);
// copy the value of S, leaving a null byte if necessary
if (s_pad == 1) sig[pos++] = 0;
System.arraycopy(signature, 21, sig, pos, 20);
return sig;
}
/**
* Converts from a JCE (ASN.1) formatted DSA signature to a RFC 2536
* compliant signature.
*
* <p>
* rfc2536 format = T . R . S
* </p>
*
* where T is a number between 0 and 8, which is based on the DSA key
* length, and R & S are formatted to be exactly 20 bytes each (no leading
* null bytes).
*
* @param params
* the DSA parameters associated with the DSA key used to
* generate the signature.
* @param signature
* the ASN.1 formatted DSA signature.
* @return a RFC 2536 formatted DSA signature.
* @throws SignatureException
* if something is wrong with the ASN.1 format.
*/
public static byte[] convertDSASignature(DSAParams params, byte[] signature)
throws SignatureException {
if (signature[0] != ASN1_SEQ || signature[2] != ASN1_INT) {
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT");
}
byte r_pad = (byte) (signature[3] - 20);
if (signature[24 + r_pad] != ASN1_INT) {
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT, INT");
}
// log.trace("(start) ASN.1 DSA Sig:\n" + base64.toString(signature));
byte s_pad = (byte) (signature[25 + r_pad] - 20);
byte[] sig = new byte[41]; // all rfc2536 signatures are 41 bytes.
// Calculate T:
sig[0] = (byte) ((params.getP().bitLength() - 512) / 64);
// copy R value
if (r_pad >= 0) {
System.arraycopy(signature, 4 + r_pad, sig, 1, 20);
} else {
// R is shorter than 20 bytes, so right justify the number
// (r_pad is negative here, remember?).
Arrays.fill(sig, 1, 1 - r_pad, (byte) 0);
System.arraycopy(signature, 4, sig, 1 - r_pad, 20 + r_pad);
}
// copy S value
if (s_pad >= 0) {
System.arraycopy(signature, 26 + r_pad + s_pad, sig, 21, 20);
} else {
// S is shorter than 20 bytes, so right justify the number
// (s_pad is negative here).
Arrays.fill(sig, 21, 21 - s_pad, (byte) 0);
System.arraycopy(signature, 26 + r_pad, sig, 21 - s_pad, 20 + s_pad);
}
// if (r_pad < 0 || s_pad < 0)
// {
// log.trace("(finish ***) RFC 2536 DSA Sig:\n" + base64.toString(sig));
//
// }
// else
// {
// log.trace("(finish) RFC 2536 DSA Sig:\n" + base64.toString(sig));
// }
return sig;
}
}

View File

@ -33,16 +33,12 @@ import java.util.Map;
import org.xbill.DNS.Name;
import com.versign.tat.dnssec.SRRset;
import com.versign.tat.dnssec.SecurityStatus;
/**
*
*/
public class TrustAnchorStore
{
private Map mMap;
private Map<String, SRRset> mMap;
public TrustAnchorStore()
{
@ -59,7 +55,7 @@ public class TrustAnchorStore
{
if (mMap == null)
{
mMap = new HashMap();
mMap = new HashMap<String, SRRset>();
}
String k = key(rrset.getName(), rrset.getDClass());
rrset.setSecurityStatus(SecurityStatus.SECURE);
@ -70,7 +66,7 @@ public class TrustAnchorStore
private SRRset lookup(String key)
{
if (mMap == null) return null;
return (SRRset) mMap.get(key);
return mMap.get(key);
}
public SRRset find(Name n, int dclass)

View File

@ -31,15 +31,10 @@ package com.versign.tat.dnssec;
import java.util.*;
import org.xbill.DNS.Flags;
import org.xbill.DNS.Header;
import org.xbill.DNS.Name;
/**
* Some basic utility functions.
*
* @author davidb
* @version $Revision$
*/
public class Util
{
@ -61,31 +56,6 @@ public class Util
return n;
}
// public static SMessage errorMessage(Request request, int rcode)
// {
// SMessage m = new SMessage(request.getID());
// Header h = m.getHeader();
// h.setRcode(rcode);
// h.setFlag(Flags.QR);
// m.setQuestion(request.getQuestion());
// m.setOPT(request.getOPT());
//
// return m;
// }
//
// public static SMessage errorMessage(SMessage message, int rcode)
// {
// Header h = message.getHeader();
// SMessage m = new SMessage(h.getID());
// h = m.getHeader();
// h.setRcode(rcode);
// h.setFlag(Flags.QR);
// m.setQuestion(message.getQuestion());
// m.setOPT(message.getOPT());
//
// return m;
// }
public static int parseInt(String s, int def)
{
if (s == null) return def;
@ -123,25 +93,21 @@ public class Util
}
}
public static List parseConfigPrefix(Properties config, String prefix)
public static List<ConfigEntry> parseConfigPrefix(Properties config, String prefix)
{
if (! prefix.endsWith("."))
{
prefix = prefix + ".";
}
List res = new ArrayList();
List<ConfigEntry> res = new ArrayList<ConfigEntry>();
for (Iterator i = config.entrySet().iterator(); i.hasNext(); )
{
Map.Entry entry = (Map.Entry) i.next();
String key = (String) entry.getKey();
if (key.startsWith(prefix))
{
key = key.substring(prefix.length());
res.add(new ConfigEntry(key, (String) entry.getValue()));
}
for (Map.Entry<Object, Object> entry : config.entrySet()) {
String key = (String) entry.getKey();
if (key.startsWith(prefix)) {
key = key.substring(prefix.length());
res.add(new ConfigEntry(key, (String) entry.getValue()));
}
}
return res;

View File

@ -45,26 +45,40 @@ public class ValUtils {
// validation strategy. They have no bearing on the iterative resolution
// algorithm, so they are confined here.
/** Not subtyped yet. */
public static final int UNTYPED = 0;
/** Not a recognized subtype. */
public static final int UNKNOWN = 1;
/** A postive, direct, response. */
public static final int POSITIVE = 2;
/** A postive response, with a CNAME/DNAME chain. */
public static final int CNAME = 3;
/** A NOERROR/NODATA response. */
public static final int NODATA = 4;
/** A NXDOMAIN response. */
public static final int NAMEERROR = 5;
/** A response to a qtype=ANY query. */
public static final int ANY = 6;
public enum ResponseType {
UNTYPED, // not sub typed yet
UNKNOWN, // not a recognized sub type
POSITIVE, // a positive response (no CNAME/DNAME chain)
CNAME, // a positive response with a CNAME/DNAME chain.
NODATA, // a NOERROR/NODATA response
NAMEERROR, // a NXDOMAIN response
ANY, // a response to a qtype=ANY query
REFERRAL,
// a referral response
THROWAWAY
// a throwaway response (i.e., an error)
}
// /** Not subtyped yet. */
// public static final int UNTYPED = 0;
//
// /** Not a recognized subtype. */
// public static final int UNKNOWN = 1;
//
// /** A postive, direct, response. */
// public static final int POSITIVE = 2;
//
// /** A postive response, with a CNAME/DNAME chain. */
// public static final int CNAME = 3;
//
// /** A NOERROR/NODATA response. */
// public static final int NODATA = 4;
//
// /** A NXDOMAIN response. */
// public static final int NAMEERROR = 5;
//
// /** A response to a qtype=ANY query. */
// public static final int ANY = 6;
/** A local copy of the verifier object. */
private DnsSecVerifier mVerifier;
@ -81,18 +95,38 @@ public class ValUtils {
*
* @return A subtype ranging from UNKNOWN to NAMEERROR.
*/
public static int classifyResponse(SMessage m) {
public static ResponseType classifyResponse(SMessage m, Name zone) {
SRRset[] rrsets;
// Normal Name Error's are easy to detect -- but don't mistake a CNAME
// chain ending in NXDOMAIN.
if (m.getRcode() == Rcode.NXDOMAIN && m.getCount(Section.ANSWER) == 0) {
return NAMEERROR;
return ResponseType.NAMEERROR;
}
// If rcode isn't NXDOMAIN or NOERROR, it is a throwaway response.
if (m.getRcode() != Rcode.NOERROR) {
return ResponseType.THROWAWAY;
}
// Next is REFERRAL. These are distinguished by having:
// 1) nothing in the ANSWER section
// 2) an NS RRset in the AUTHORITY section that is a strict subdomain of
// 'zone' (the presumed queried zone).
if (zone != null && m.getCount(Section.ANSWER) == 0
&& m.getCount(Section.AUTHORITY) > 0) {
rrsets = m.getSectionRRsets(Section.AUTHORITY);
for (int i = 0; i < rrsets.length; ++i) {
if (rrsets[i].getType() == Type.NS
&& strictSubdomain(rrsets[i].getName(), zone)) {
return ResponseType.REFERRAL;
}
}
}
// Next is NODATA
// st_log.debug("classifyResponse: ancount = " +
// m.getCount(Section.ANSWER));
if (m.getCount(Section.ANSWER) == 0) {
return NODATA;
return ResponseType.NODATA;
}
// We distinguish between CNAME response and other positive/negative
@ -100,23 +134,22 @@ public class ValUtils {
int qtype = m.getQuestion().getType();
// We distinguish between ANY and CNAME or POSITIVE because ANY
// responses
// are validated differently.
// responses are validated differently.
if (qtype == Type.ANY) {
return ANY;
return ResponseType.ANY;
}
SRRset[] rrsets = m.getSectionRRsets(Section.ANSWER);
rrsets = m.getSectionRRsets(Section.ANSWER);
// Note that DNAMEs will be ignored here, unless qtype=DNAME. Unless
// qtype=CNAME, this will yield a CNAME response.
for (int i = 0; i < rrsets.length; i++) {
if (rrsets[i].getType() == qtype) return POSITIVE;
if (rrsets[i].getType() == Type.CNAME) return CNAME;
if (rrsets[i].getType() == qtype) return ResponseType.POSITIVE;
if (rrsets[i].getType() == Type.CNAME) return ResponseType.CNAME;
}
// st_log.warn("Failed to classify response message:\n" + m);
return UNKNOWN;
return ResponseType.UNKNOWN;
}
/**
@ -126,162 +159,25 @@ public class ValUtils {
*
* @param m
* The response to analyze.
* @param request
* The request that generated the response.
* @return a signer name, if the response is signed (even partially), or
* null if the response isn't signed.
*/
public Name findSigner(SMessage m) {
int subtype = classifyResponse(m);
Name qname = m.getQName();
// FIXME: this used to classify the message, then look in the pertinent
// section. Now we just find the first RRSIG in the ANSWER and AUTHORIY
// sections.
SRRset[] rrsets;
switch (subtype) {
case POSITIVE:
case CNAME:
case ANY:
// Check to see if the ANSWER section RRset
rrsets = m.getSectionRRsets(Section.ANSWER);
for (int i = 0; i < rrsets.length; i++) {
if (rrsets[i].getName().equals(qname)) {
return rrsets[i].getSignerName();
}
}
return null;
case NAMEERROR:
case NODATA:
// Check to see if the AUTH section NSEC record(s) have rrsigs
rrsets = m.getSectionRRsets(Section.AUTHORITY);
for (int i = 0; i < rrsets.length; i++) {
if (rrsets[i].getType() == Type.NSEC
|| rrsets[i].getType() == Type.NSEC3) {
return rrsets[i].getSignerName();
}
}
return null;
default:
// log.debug("findSigner: could not find signer name "
// + "for unknown type response.");
return null;
}
}
public boolean dssetIsUsable(SRRset ds_rrset) {
for (Iterator i = ds_rrset.rrs(); i.hasNext();) {
DSRecord ds = (DSRecord) i.next();
if (supportsDigestID(ds.getDigestID())
&& mVerifier.supportsAlgorithm(ds.getAlgorithm())) {
return true;
for (int section = Section.ANSWER; section < Section.ADDITIONAL; ++section) {
SRRset[] rrsets = m.getSectionRRsets(section);
for (int i = 0; i < rrsets.length; ++i) {
Name signerName = rrsets[i].getSignerName();
if (signerName != null) return signerName;
}
}
return false;
return null;
}
/**
* Given a DS rrset and a DNSKEY rrset, match the DS to a DNSKEY and verify
* the DNSKEY rrset with that key.
*
* @param dnskey_rrset
* The DNSKEY rrset to match against. The security status of this
* rrset will be updated on a successful verification.
* @param ds_rrset
* The DS rrset to match with. This rrset must already be
* trusted.
*
* @return a KeyEntry. This will either contain the now trusted
* dnskey_rrset, a "null" key entry indicating that this DS
* rrset/DNSKEY pair indicate an secure end to the island of trust
* (i.e., unknown algorithms), or a "bad" KeyEntry if the dnskey
* rrset fails to verify. Note that the "null" response should
* generally only occur in a private algorithm scenario: normally
* this sort of thing is checked before fetching the matching DNSKEY
* rrset.
*/
// public KeyEntry verifyNewDNSKEYs(SRRset dnskey_rrset, SRRset ds_rrset)
// {
// if (!dnskey_rrset.getName().equals(ds_rrset.getName()))
// {
// // log.debug("DNSKEY RRset did not match DS RRset by name!");
// return KeyEntry
// .newBadKeyEntry(ds_rrset.getName(), ds_rrset.getDClass());
// }
//
// // as long as this is false, we can consider this DS rrset to be
// // equivalent to no DS rrset.
// boolean hasUsefulDS = false;
//
// for (Iterator i = ds_rrset.rrs(); i.hasNext();)
// {
// DSRecord ds = (DSRecord) i.next();
//
// // Check to see if we can understand this DS.
// if (!supportsDigestID(ds.getDigestID())
// || !mVerifier.supportsAlgorithm(ds.getAlgorithm()))
// {
// continue;
// }
//
// // Once we see a single DS with a known digestID and algorithm, we
// // cannot return INSECURE (with a "null" KeyEntry).
// hasUsefulDS = true;
//
// DNSKEY : for (Iterator j = dnskey_rrset.rrs(); j.hasNext();)
// {
// DNSKEYRecord dnskey = (DNSKEYRecord) j.next();
//
// // Skip DNSKEYs that don't match the basic criteria.
// if (ds.getFootprint() != dnskey.getFootprint()
// || ds.getAlgorithm() != dnskey.getAlgorithm())
// {
// continue;
// }
//
// // Convert the candidate DNSKEY into a hash using the same DS hash
// // algorithm.
// byte[] key_hash = calculateDSHash(dnskey, ds.getDigestID());
// byte[] ds_hash = ds.getDigest();
//
// // see if there is a length mismatch (unlikely)
// if (key_hash.length != ds_hash.length)
// {
// continue DNSKEY;
// }
//
// for (int k = 0; k < key_hash.length; k++)
// {
// if (key_hash[k] != ds_hash[k]) continue DNSKEY;
// }
//
// // Otherwise, we have a match! Make sure that the DNSKEY verifies
// // *with this key*.
// byte res = mVerifier.verify(dnskey_rrset, dnskey);
// if (res == SecurityStatus.SECURE)
// {
// // log.trace("DS matched DNSKEY.");
// dnskey_rrset.setSecurityStatus(SecurityStatus.SECURE);
// return KeyEntry.newKeyEntry(dnskey_rrset);
// }
// // If it didn't validate with the DNSKEY, try the next one!
// }
// }
//
// // None of the DS's worked out.
//
// // If no DSs were understandable, then this is OK.
// if (!hasUsefulDS)
// {
// //
// log.debug("No usuable DS records were found -- treating as insecure.");
// return KeyEntry.newNullKeyEntry(ds_rrset.getName(), ds_rrset
// .getDClass(), ds_rrset.getTTL());
// }
// // If any were understandable, then it is bad.
// // log.debug("Failed to match any usable DS to a DNSKEY.");
// return KeyEntry.newBadKeyEntry(ds_rrset.getName(), ds_rrset.getDClass());
// }
/**
* Given a DNSKEY record, generate the DS record from it.
*
@ -406,9 +302,9 @@ public class ValUtils {
* @return The status (BOGUS or SECURE).
*/
public byte verifySRRset(SRRset rrset, SRRset key_rrset) {
String rrset_name = rrset.getName() + "/"
+ Type.string(rrset.getType()) + "/"
+ DClass.string(rrset.getDClass());
// String rrset_name = rrset.getName() + "/"
// + Type.string(rrset.getType()) + "/"
// + DClass.string(rrset.getDClass());
if (rrset.getSecurityStatus() == SecurityStatus.SECURE) {
// log.trace("verifySRRset: rrset <" + rrset_name
@ -433,7 +329,7 @@ public class ValUtils {
}
/**
* Determine if a given type map has a given typ.
* Determine if a given type map has a given type.
*
* @param types
* The type map from the NSEC record.
@ -448,6 +344,7 @@ public class ValUtils {
return false;
}
@SuppressWarnings("unchecked")
public static RRSIGRecord rrsetFirstSig(RRset rrset) {
for (Iterator i = rrset.sigs(); i.hasNext();) {
return (RRSIGRecord) i.next();
@ -517,7 +414,7 @@ public class ValUtils {
* generating wildcard.
*
* @param rrset
* The rrset to chedck.
* The rrset to check.
* @return the wildcard name, if the rrset was synthesized from a wildcard.
* null if not.
*/
@ -577,14 +474,11 @@ public class ValUtils {
// If NSEC is a parent of qname, we need to check the type map
// If the parent name has a DNAME or is a delegation point, then this
// NSEC
// is being misused.
if (qname.subdomain(owner)
&& (typeMapHasType(nsec.getTypes(), Type.DNAME) || (typeMapHasType(
nsec.getTypes(),
Type.NS) && !typeMapHasType(
nsec.getTypes(),
Type.SOA)))) {
// NSEC is being misused.
boolean hasBadType = typeMapHasType(nsec.getTypes(), Type.DNAME)
|| (typeMapHasType(nsec.getTypes(), Type.NS) && !typeMapHasType(nsec.getTypes(),
Type.SOA));
if (qname.subdomain(owner) && hasBadType) {
return false;
}