From 1f647e3c77c08e4ad202104e21b19a707a3d459c Mon Sep 17 00:00:00 2001 From: David Blacka Date: Sun, 19 Apr 2009 17:12:48 -0400 Subject: [PATCH] remove some warnings by using java 5 features --- .../versign/tat/dnssec/CaptiveValidator.java | 26 +- .../versign/tat/dnssec/DnsSecVerifier.java | 40 +- src/com/versign/tat/dnssec/NSEC3ValUtils.java | 1423 ++++++++--------- src/com/versign/tat/dnssec/SMessage.java | 637 ++++---- src/com/versign/tat/dnssec/SRRset.java | 231 ++- src/com/versign/tat/dnssec/SignUtils.java | 786 ++++----- .../versign/tat/dnssec/TrustAnchorStore.java | 10 +- src/com/versign/tat/dnssec/Util.java | 50 +- src/com/versign/tat/dnssec/ValUtils.java | 278 +--- 9 files changed, 1571 insertions(+), 1910 deletions(-) diff --git a/src/com/versign/tat/dnssec/CaptiveValidator.java b/src/com/versign/tat/dnssec/CaptiveValidator.java index 4e808f5..6c51d35 100644 --- a/src/com/versign/tat/dnssec/CaptiveValidator.java +++ b/src/com/versign/tat/dnssec/CaptiveValidator.java @@ -298,6 +298,14 @@ public class CaptiveValidator { m.setStatus(SecurityStatus.SECURE); } + private void validateReferral(SMessage message, SRRset key_rrset) { + + } + + private void validateCNAMEResponse(SMessage message, SRRset key_rrset) { + + } + /** * Given an "ANY" response -- a response that contains an answer to a * qtype==ANY question, with answers. This consists of simply verifying all @@ -675,34 +683,38 @@ public class CaptiveValidator { // } - public byte validateMessage(SMessage message) { + public byte validateMessage(SMessage message, Name zone) { SRRset key_rrset = findKeys(message); if (key_rrset == null) { return SecurityStatus.BOGUS; } - int subtype = ValUtils.classifyResponse(message); + ValUtils.ResponseType subtype = ValUtils.classifyResponse(message, zone); switch (subtype) { - case ValUtils.POSITIVE: + case POSITIVE: // log.trace("Validating a positive response"); validatePositiveResponse(message, key_rrset); break; - case ValUtils.NODATA: + case REFERRAL: + validateReferral(message, key_rrset); + break; + case NODATA: // log.trace("Validating a nodata response"); validateNodataResponse(message, key_rrset); break; - case ValUtils.NAMEERROR: + case NAMEERROR: // log.trace("Validating a nxdomain response"); validateNameErrorResponse(message, key_rrset); break; - case ValUtils.CNAME: + case CNAME: // log.trace("Validating a cname response"); // forward on to the special CNAME state for this. // state.state = ValEventState.CNAME_STATE; + validateCNAMEResponse(message, key_rrset); break; - case ValUtils.ANY: + case ANY: // log.trace("Validating a postive ANY response"); validateAnyResponse(message, key_rrset); break; diff --git a/src/com/versign/tat/dnssec/DnsSecVerifier.java b/src/com/versign/tat/dnssec/DnsSecVerifier.java index 5f21dc6..e43b987 100644 --- a/src/com/versign/tat/dnssec/DnsSecVerifier.java +++ b/src/com/versign/tat/dnssec/DnsSecVerifier.java @@ -1,7 +1,5 @@ /* - * $Id$ - * - * Copyright (c) 2005 VeriSign, Inc. All rights reserved. + * Copyright (c) 2009 VeriSign, Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions @@ -56,7 +54,7 @@ public class DnsSecVerifier * This is a mapping of DNSSEC algorithm numbers/private identifiers to JCA * algorithm identifiers. */ - private HashMap mAlgorithmMap; + private HashMap mAlgorithmMap; private static class AlgEntry { @@ -74,7 +72,7 @@ public class DnsSecVerifier public DnsSecVerifier() { - mAlgorithmMap = new HashMap(); + mAlgorithmMap = new HashMap(); // set the default algorithm map. mAlgorithmMap.put(new Integer(DNSSEC.RSAMD5), new AlgEntry("MD5withRSA", @@ -105,12 +103,9 @@ public class DnsSecVerifier // For now, we just accept new identifiers for existing algoirthms. // FIXME: handle private identifiers. - List aliases = Util.parseConfigPrefix(config, "dns.algorithm."); - - for (Iterator i = aliases.iterator(); i.hasNext();) - { - Util.ConfigEntry entry = (Util.ConfigEntry) i.next(); + List aliases = Util.parseConfigPrefix(config, "dns.algorithm."); + for (Util.ConfigEntry entry : aliases) { Integer alg_alias = new Integer(Util.parseInt(entry.key, -1)); Integer alg_orig = new Integer(Util.parseInt(entry.value, -1)); @@ -132,16 +127,14 @@ public class DnsSecVerifier } // for debugging purposes, log the entire algorithm map table. - for (Iterator i = mAlgorithmMap.keySet().iterator(); i.hasNext(); ) - { - Integer alg = (Integer) i.next(); - AlgEntry entry = (AlgEntry) mAlgorithmMap.get(alg); +// for (Integer alg : mAlgorithmMap.keySet()) { +// AlgEntry entry = mAlgorithmMap.get(alg); // if (entry == null) // log.warn("DNSSEC alg " + alg + " has a null entry!"); // else // log.debug("DNSSEC alg " + alg + " maps to " + entry.jcaName // + " (" + entry.dnssecAlg + ")"); - } +// } } /** @@ -154,7 +147,8 @@ public class DnsSecVerifier * @return A List contains a one or more DNSKEYRecord objects, or null if a * matching DNSKEY could not be found. */ - private List findKey(RRset dnskey_rrset, RRSIGRecord signature) + @SuppressWarnings("unchecked") +private List findKey(RRset dnskey_rrset, RRSIGRecord signature) { if (!signature.getSigner().equals(dnskey_rrset.getName())) { @@ -167,7 +161,7 @@ public class DnsSecVerifier int keyid = signature.getFootprint(); int alg = signature.getAlgorithm(); - List res = new ArrayList(dnskey_rrset.size()); + List res = new ArrayList(dnskey_rrset.size()); for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) { @@ -325,7 +319,7 @@ public class DnsSecVerifier byte result = checkSignature(rrset, sigrec); if (result != SecurityStatus.SECURE) return result; - List keys = findKey(key_rrset, sigrec); + List keys = findKey(key_rrset, sigrec); if (keys == null) { @@ -335,9 +329,7 @@ public class DnsSecVerifier byte status = SecurityStatus.UNCHECKED; - for (Iterator i = keys.iterator(); i.hasNext();) - { - DNSKEYRecord key = (DNSKEYRecord) i.next(); + for (DNSKEYRecord key : keys) { status = verifySignature(rrset, sigrec, key); if (status == SecurityStatus.SECURE) break; @@ -354,7 +346,8 @@ public class DnsSecVerifier * @return SecurityStatus.SECURE if the rrest verified positively, * SecurityStatus.BOGUS otherwise. */ - public byte verify(RRset rrset, RRset key_rrset) + @SuppressWarnings("unchecked") +public byte verify(RRset rrset, RRset key_rrset) { Iterator i = rrset.sigs(); @@ -386,7 +379,8 @@ public class DnsSecVerifier * @param dnskey The DNSKEY to verify with. * @return SecurityStatus.SECURE if the rrset verified, BOGUS otherwise. */ - public byte verify(RRset rrset, DNSKEYRecord dnskey) + @SuppressWarnings("unchecked") +public byte verify(RRset rrset, DNSKEYRecord dnskey) { // Iterate over RRSIGS diff --git a/src/com/versign/tat/dnssec/NSEC3ValUtils.java b/src/com/versign/tat/dnssec/NSEC3ValUtils.java index 72674d5..8e77136 100644 --- a/src/com/versign/tat/dnssec/NSEC3ValUtils.java +++ b/src/com/versign/tat/dnssec/NSEC3ValUtils.java @@ -37,829 +37,720 @@ import org.xbill.DNS.utils.base32; import com.versign.tat.dnssec.SignUtils.ByteArrayComparator; +public class NSEC3ValUtils { + // FIXME: should probably refactor to handle different NSEC3 parameters more + // efficiently. + // Given a list of NSEC3 RRs, they should be grouped according to + // parameters. The idea is to hash and compare for each group independently, + // instead of having to skip NSEC3 RRs with the wrong parameters. -public class NSEC3ValUtils -{ + private static Name asterisk_label = Name.fromConstantString("*"); - // FIXME: should probably refactor to handle different NSEC3 parameters more - // efficiently. - // Given a list of NSEC3 RRs, they should be grouped according to - // parameters. The idea is to hash and compare for each group independently, - // instead of having to skip NSEC3 RRs with the wrong parameters. + /** + * This is a class to encapsulate a unique set of NSEC3 parameters: + * algorithm, iterations, and salt. + */ + private static class NSEC3Parameters { + public byte alg; + public byte[] salt; + public int iterations; + public NSEC3Parameters(NSEC3Record r) { + alg = r.getHashAlgorithm(); + salt = r.getSalt(); + iterations = r.getIterations(); + } - private static Name asterisk_label = Name.fromConstantString("*"); + public boolean match(NSEC3Record r, ByteArrayComparator bac) { + if (r.getHashAlgorithm() != alg) return false; + if (r.getIterations() != iterations) return false; - /** - * This is a class to encapsulate a unique set of NSEC3 parameters: - * algorithm, iterations, and salt. - */ - private static class NSEC3Parameters - { - public byte alg; - public byte[] salt; - public int iterations; + if (salt == null && r.getSalt() != null) return false; - public NSEC3Parameters(NSEC3Record r) - { - alg = r.getHashAlgorithm(); - salt = r.getSalt(); - iterations = r.getIterations(); + if (bac == null) bac = new ByteArrayComparator(); + return bac.compare(r.getSalt(), salt) == 0; + } } - public boolean match(NSEC3Record r, ByteArrayComparator bac) - { - if (r.getHashAlgorithm() != alg) return false; - if (r.getIterations() != iterations) return false; + /** + * This is just a simple class to encapsulate the response to a closest + * encloser proof. + */ + private static class CEResponse { + public Name closestEncloser; + public NSEC3Record ce_nsec3; + public NSEC3Record nc_nsec3; - if (salt == null && r.getSalt() != null) return false; - - if (bac == null) bac = new ByteArrayComparator(); - return bac.compare(r.getSalt(), salt) == 0; + public CEResponse(Name ce, NSEC3Record nsec3) { + this.closestEncloser = ce; + this.ce_nsec3 = nsec3; + } } - } - /** - * This is just a simple class to enapsulate the response to a closest - * encloser proof. - */ - private static class CEResponse - { - public Name closestEncloser; - public NSEC3Record ce_nsec3; - public NSEC3Record nc_nsec3; - - public CEResponse(Name ce, NSEC3Record nsec3) - { - this.closestEncloser = ce; - this.ce_nsec3 = nsec3; + public static boolean supportsHashAlgorithm(int alg) { + if (alg == NSEC3Record.SHA1_DIGEST_ID) return true; + return false; } - } - public static boolean supportsHashAlgorithm(int alg) - { - if (alg == NSEC3Record.SHA1_DIGEST_ID) return true; - return false; - } - - public static void stripUnknownAlgNSEC3s(List nsec3s) - { - if (nsec3s == null) return; - for (ListIterator i = nsec3s.listIterator(); i.hasNext(); ) - { - NSEC3Record nsec3 = (NSEC3Record) i.next(); - if (!supportsHashAlgorithm(nsec3.getHashAlgorithm())) - { - i.remove(); - } + public static void stripUnknownAlgNSEC3s(List nsec3s) { + if (nsec3s == null) return; + for (ListIterator i = nsec3s.listIterator(); i.hasNext();) { + NSEC3Record nsec3 = i.next(); + if (!supportsHashAlgorithm(nsec3.getHashAlgorithm())) { + i.remove(); + } + } } - } - - /** - * Given a list of NSEC3Records that are part of a message, determine the - * NSEC3 parameters (hash algorithm, iterations, and salt) present. If there - * is more than one distinct grouping, return null; - * - * @param nsec3s A list of NSEC3Record object. - * @return A set containing a number of objects (NSEC3Parameter objects) - * that correspond to each distinct set of parameters, or null if - * the nsec3s list was empty. - */ - public static NSEC3Parameters nsec3Parameters(List nsec3s) - { - if (nsec3s == null || nsec3s.size() == 0) return null; - NSEC3Parameters params = new NSEC3Parameters((NSEC3Record) nsec3s.get(0)); - ByteArrayComparator bac = new ByteArrayComparator(); - - for (Iterator i = nsec3s.iterator(); i.hasNext();) - { - if (! params.match((NSEC3Record) i.next(), bac)) - { + /** + * Given a list of NSEC3Records that are part of a message, determine the + * NSEC3 parameters (hash algorithm, iterations, and salt) present. If there + * is more than one distinct grouping, return null; + * + * @param nsec3s + * A list of NSEC3Record object. + * @return A set containing a number of objects (NSEC3Parameter objects) + * that correspond to each distinct set of parameters, or null if + * the nsec3s list was empty. + */ + public static NSEC3Parameters nsec3Parameters(List nsec3s) { + if (nsec3s == null || nsec3s.size() == 0) return null; + + NSEC3Parameters params = new NSEC3Parameters( + (NSEC3Record) nsec3s.get(0)); + ByteArrayComparator bac = new ByteArrayComparator(); + + for (NSEC3Record nsec3 : nsec3s) { + if (!params.match(nsec3, bac)) return null; + } + + return params; + } + + + /** + * Given a hash and an a zone name, construct an NSEC3 ownername. + * + * @param hash + * The hash of an original name. + * @param zonename + * The zone to use in constructing the NSEC3 name. + * @return The NSEC3 name. + */ + private static Name hashName(byte[] hash, Name zonename) { + try { + return new Name(base32.toString(hash).toLowerCase(), zonename); + } catch (TextParseException e) { + // Note, this should never happen. + return null; + } + } + + /** + * Given a set of NSEC3 parameters, hash a name. + * + * @param name + * The name to hash. + * @param params + * The parameters to hash with. + * @return The hash. + */ + private static byte[] hash(Name name, NSEC3Parameters params) { + try { + return NSEC3Record.hash(name, params.alg, params.iterations, + params.salt); + } catch (NoSuchAlgorithmException e) { + // st_log.debug("Did not recognize hash algorithm: " + params.alg); + return null; + } + } + + /** + * Given the name of a closest encloser, return the name *.closest_encloser. + * + * @param closestEncloser + * The name to start with. + * @return The wildcard name. + */ + private static Name ceWildcard(Name closestEncloser) { + try { + Name wc = Name.concatenate(asterisk_label, closestEncloser); + return wc; + } catch (NameTooLongException e) { + return null; + } + } + + /** + * Given a qname and its proven closest encloser, calculate the "next + * closest" name. Basically, this is the name that is one label longer than + * the closest encloser that is still a subdomain of qname. + * + * @param qname + * The qname. + * @param closestEncloser + * The closest encloser name. + * @return The next closer name. + */ + private static Name nextClosest(Name qname, Name closestEncloser) { + int strip = qname.labels() - closestEncloser.labels() - 1; + return (strip > 0) ? new Name(qname, strip) : qname; + } + + /** + * Find the NSEC3Record that matches a hash of a name. + * + * @param hash + * The pre-calculated hash of a name. + * @param zonename + * The name of the zone that the NSEC3s are from. + * @param nsec3s + * A list of NSEC3Records from a given message. + * @param params + * The parameters used for calculating the hash. + * @param bac + * An already allocated ByteArrayComparator, for reuse. This may + * be null. + * + * @return The matching NSEC3Record, if one is present. + */ + private static NSEC3Record findMatchingNSEC3(byte[] hash, Name zonename, + List nsec3s, + NSEC3Parameters params, + ByteArrayComparator bac) { + Name n = hashName(hash, zonename); + + for (NSEC3Record nsec3 : nsec3s) { + // Skip nsec3 records that are using different parameters. + if (!params.match(nsec3, bac)) continue; + if (n.equals(nsec3.getName())) return nsec3; + } return null; - } - } - return params; - } - - /** - * In a list of NSEC3Record object pulled from a given message, find the - * NSEC3 that directly matches a given name, without hashing. - * - * @param n The name in question. - * @param nsec3s A list of NSEC3Records from a given message. - * @return The matching NSEC3Record, or null if there wasn't one. - */ - // private static NSEC3Record findDirectMatchingNSEC3(Name n, List nsec3s) - // { - // if (n == null || nsec3s == null) return null; - // - // for (Iterator i = nsec3s.iterator(); i.hasNext();) - // { - // NSEC3Record nsec3 = (NSEC3Record) i.next(); - // if (n.equals(nsec3.getName())) return nsec3; - // } - // - // return null; - // } - /** - * Given a hash and an a zone name, construct an NSEC3 ownername. - * - * @param hash The hash of an original name. - * @param zonename The zone to use in constructing the NSEC3 name. - * @return The NSEC3 name. - */ - private static Name hashName(byte[] hash, Name zonename) - { - try - { - return new Name(base32.toString(hash).toLowerCase(), zonename); - } - catch (TextParseException e) - { - // Note, this should never happen. - return null; - } - } - - /** - * Given a set of NSEC3 parameters, hash a name. - * - * @param name The name to hash. - * @param params The parameters to hash with. - * @return The hash. - */ - private static byte[] hash(Name name, NSEC3Parameters params) - { - try - { - return NSEC3Record.hash(name, - params.alg, - params.iterations, - params.salt); - } - catch (NoSuchAlgorithmException e) - { -// st_log.debug("Did not recognize hash algorithm: " + params.alg); - return null; - } - } - - /** - * Given the name of a closest encloser, return the name *.closest_encloser. - * - * @param closestEncloser The name to start with. - * @return The wildcard name. - */ - private static Name ceWildcard(Name closestEncloser) - { - try - { - Name wc = Name.concatenate(asterisk_label, closestEncloser); - return wc; - } - catch (NameTooLongException e) - { - return null; - } - } - - /** - * Given a qname and its proven closest encloser, calculate the "next - * closest" name. Basically, this is the name that is one label longer than - * the closest encloser that is still a subdomain of qname. - * - * @param qname The qname. - * @param closestEncloser The closest encloser name. - * @return The next closer name. - */ - private static Name nextClosest(Name qname, Name closestEncloser) - { - int strip = qname.labels() - closestEncloser.labels() - 1; - return (strip > 0) ? new Name(qname, strip) : qname; - } - - /** - * Find the NSEC3Record that matches a hash of a name. - * - * @param hash The pre-calculated hash of a name. - * @param zonename The name of the zone that the NSEC3s are from. - * @param nsec3s A list of NSEC3Records from a given message. - * @param params The parameters used for calculating the hash. - * @param bac An already allocated ByteArrayComparator, for reuse. This may - * be null. - * - * @return The matching NSEC3Record, if one is present. - */ - private static NSEC3Record findMatchingNSEC3(byte[] hash, Name zonename, - List nsec3s, NSEC3Parameters params, ByteArrayComparator bac) - { - Name n = hashName(hash, zonename); - - for (Iterator i = nsec3s.iterator(); i.hasNext();) - { - NSEC3Record nsec3 = (NSEC3Record) i.next(); - // Skip nsec3 records that are using different parameters. - if (!params.match(nsec3, bac)) continue; - if (n.equals(nsec3.getName())) return nsec3; - } - return null; - } - - /** - * Given a hash and a candidate NSEC3Record, determine if that NSEC3Record - * covers the hash. Covers specifically means that the hash is in between - * the owner and next hashes and does not equal either. - * - * @param nsec3 The candidate NSEC3Record. - * @param hash The precalculated hash. - * @param bac An already allocated comparator. This may be null. - * @return True if the NSEC3Record covers the hash. - */ - private static boolean nsec3Covers(NSEC3Record nsec3, byte[] hash, - ByteArrayComparator bac) - { - byte[] owner = nsec3.getOwner(); - byte[] next = nsec3.getNext(); - - // This is the "normal case: owner < next and owner < hash < next - if (bac.compare(owner, hash) < 0 && bac.compare(hash, next) < 0) - return true; - - // this is the end of zone case: next < owner && hash > owner || hash < - // next - if (bac.compare(next, owner) <= 0 - && (bac.compare(hash, next) < 0 || bac.compare(owner, hash) < 0)) - return true; - - // Otherwise, the NSEC3 does not cover the hash. - return false; - } - - /** - * Given a pre-hashed name, find a covering NSEC3 from among a list of - * NSEC3s. - * - * @param hash The hash to consider. - * @param zonename The name of the zone. - * @param nsec3s The list of NSEC3s present in a message. - * @param params The NSEC3 parameters used to generate the hash -- NSEC3s - * that do not use those parameters will be skipped. - * - * @return A covering NSEC3 if one is present, null otherwise. - */ - private static NSEC3Record findCoveringNSEC3(byte[] hash, Name zonename, - List nsec3s, NSEC3Parameters params, ByteArrayComparator bac) - { - ByteArrayComparator comparator = new ByteArrayComparator(); - - for (Iterator i = nsec3s.iterator(); i.hasNext();) - { - NSEC3Record nsec3 = (NSEC3Record) i.next(); - if (!params.match(nsec3, bac)) continue; - - if (nsec3Covers(nsec3, hash, comparator)) return nsec3; } - return null; - } + /** + * Given a hash and a candidate NSEC3Record, determine if that NSEC3Record + * covers the hash. Covers specifically means that the hash is in between + * the owner and next hashes and does not equal either. + * + * @param nsec3 + * The candidate NSEC3Record. + * @param hash + * The precalculated hash. + * @param bac + * An already allocated comparator. This may be null. + * @return True if the NSEC3Record covers the hash. + */ + private static boolean nsec3Covers(NSEC3Record nsec3, byte[] hash, + ByteArrayComparator bac) { + byte[] owner = nsec3.getOwner(); + byte[] next = nsec3.getNext(); + // This is the "normal case: owner < next and owner < hash < next + if (bac.compare(owner, hash) < 0 && bac.compare(hash, next) < 0) + return true; - /** - * Given a name and a list of NSEC3s, find the candidate closest encloser. - * This will be the first ancestor of 'name' (including itself) to have a - * matching NSEC3 RR. - * - * @param name The name the start with. - * @param zonename The name of the zone that the NSEC3s came from. - * @param nsec3s The list of NSEC3s. - * @param nsec3params The NSEC3 parameters. - * @param bac A pre-allocated comparator. May be null. - * - * @return A CEResponse containing the closest encloser name and the NSEC3 - * RR that matched it, or null if there wasn't one. - */ - private static CEResponse findClosestEncloser(Name name, Name zonename, - List nsec3s, NSEC3Parameters params, ByteArrayComparator bac) - { - Name n = name; + // this is the end of zone case: next < owner && hash > owner || hash < + // next + if (bac.compare(next, owner) <= 0 + && (bac.compare(hash, next) < 0 || bac.compare(owner, hash) < 0)) + return true; - NSEC3Record nsec3; - - // This scans from longest name to shortest, so the first match we find is - // the only viable candidate. - // FIXME: modify so that the NSEC3 matching the zone apex need not be - // present. - while (n.labels() >= zonename.labels()) - { - nsec3 = findMatchingNSEC3(hash(n, params), zonename, nsec3s, params, bac); - if (nsec3 != null) return new CEResponse(n, nsec3); - n = new Name(n, 1); + // Otherwise, the NSEC3 does not cover the hash. + return false; } - return null; - } + /** + * Given a pre-hashed name, find a covering NSEC3 from among a list of + * NSEC3s. + * + * @param hash + * The hash to consider. + * @param zonename + * The name of the zone. + * @param nsec3s + * The list of NSEC3s present in a message. + * @param params + * The NSEC3 parameters used to generate the hash -- NSEC3s that + * do not use those parameters will be skipped. + * + * @return A covering NSEC3 if one is present, null otherwise. + */ + private static NSEC3Record findCoveringNSEC3(byte[] hash, Name zonename, + List nsec3s, + NSEC3Parameters params, + ByteArrayComparator bac) { + ByteArrayComparator comparator = new ByteArrayComparator(); - /** - * Given a List of nsec3 RRs, find and prove the closest encloser to qname. - * - * @param qname The qname in question. - * @param zonename The name of the zone that the NSEC3 RRs come from. - * @param nsec3s The list of NSEC3s found the this response (already - * verified). - * @param params The NSEC3 parameters found in the response. - * @param bac A pre-allocated comparator. May be null. - * @param proveDoesNotExist If true, then if the closest encloser turns out - * to be qname, then null is returned. - * @return null if the proof isn't completed. Otherwise, return a CEResponse - * object which contains the closest encloser name and the NSEC3 - * that matches it. - */ - private static CEResponse proveClosestEncloser(Name qname, Name zonename, - List nsec3s, NSEC3Parameters params, ByteArrayComparator bac, - boolean proveDoesNotExist) - { - CEResponse candidate = findClosestEncloser(qname, - zonename, - nsec3s, - params, - bac); + for (NSEC3Record nsec3 : nsec3s) { + if (!params.match(nsec3, bac)) continue; + if (nsec3Covers(nsec3, hash, comparator)) return nsec3; + } - if (candidate == null) - { -// st_log.debug("proveClosestEncloser: could not find a " -// + "candidate for the closest encloser."); - return null; - } - - if (candidate.closestEncloser.equals(qname)) - { - if (proveDoesNotExist) - { -// st_log.debug("proveClosestEncloser: proved that qname existed!"); return null; - } - // otherwise, we need to nothing else to prove that qname is its own - // closest encloser. - return candidate; } - // If the closest encloser is actually a delegation, then the response - // should have been a referral. If it is a DNAME, then it should have been - // a DNAME response. - if (candidate.ce_nsec3.hasType(Type.NS) - && !candidate.ce_nsec3.hasType(Type.SOA)) - { -// st_log.debug("proveClosestEncloser: closest encloser " -// + "was a delegation!"); - return null; - } - if (candidate.ce_nsec3.hasType(Type.DNAME)) - { -// st_log.debug("proveClosestEncloser: closest encloser was a DNAME!"); - return null; + /** + * Given a name and a list of NSEC3s, find the candidate closest encloser. + * This will be the first ancestor of 'name' (including itself) to have a + * matching NSEC3 RR. + * + * @param name + * The name the start with. + * @param zonename + * The name of the zone that the NSEC3s came from. + * @param nsec3s + * The list of NSEC3s. + * @param nsec3params + * The NSEC3 parameters. + * @param bac + * A pre-allocated comparator. May be null. + * + * @return A CEResponse containing the closest encloser name and the NSEC3 + * RR that matched it, or null if there wasn't one. + */ + private static CEResponse findClosestEncloser(Name name, Name zonename, + List nsec3s, + NSEC3Parameters params, + ByteArrayComparator bac) { + Name n = name; + + NSEC3Record nsec3; + + // This scans from longest name to shortest, so the first match we find + // is + // the only viable candidate. + // FIXME: modify so that the NSEC3 matching the zone apex need not be + // present. + while (n.labels() >= zonename.labels()) { + nsec3 = findMatchingNSEC3(hash(n, params), zonename, nsec3s, + params, bac); + if (nsec3 != null) return new CEResponse(n, nsec3); + n = new Name(n, 1); + } + + return null; } - // Otherwise, we need to show that the next closer name is covered. - Name nextClosest = nextClosest(qname, candidate.closestEncloser); - - byte[] nc_hash = hash(nextClosest, params); - candidate.nc_nsec3 = findCoveringNSEC3(nc_hash, - zonename, - nsec3s, - params, - bac); - if (candidate.nc_nsec3 == null) - { -// st_log.debug("Could not find proof that the " -// + "closest encloser was the closest encloser"); - return null; + /** + * Given a List of nsec3 RRs, find and prove the closest encloser to qname. + * + * @param qname + * The qname in question. + * @param zonename + * The name of the zone that the NSEC3 RRs come from. + * @param nsec3s + * The list of NSEC3s found the this response (already verified). + * @param params + * The NSEC3 parameters found in the response. + * @param bac + * A pre-allocated comparator. May be null. + * @param proveDoesNotExist + * If true, then if the closest encloser turns out to be qname, + * then null is returned. + * @return null if the proof isn't completed. Otherwise, return a CEResponse + * object which contains the closest encloser name and the NSEC3 + * that matches it. + */ + private static CEResponse proveClosestEncloser(Name qname, Name zonename, + List nsec3s, + NSEC3Parameters params, + ByteArrayComparator bac, + boolean proveDoesNotExist) { + CEResponse candidate = findClosestEncloser(qname, zonename, nsec3s, + params, bac); + + if (candidate == null) { + // st_log.debug("proveClosestEncloser: could not find a " + // + "candidate for the closest encloser."); + return null; + } + + if (candidate.closestEncloser.equals(qname)) { + if (proveDoesNotExist) { + // st_log.debug("proveClosestEncloser: proved that qname existed!"); + return null; + } + // otherwise, we need to nothing else to prove that qname is its own + // closest encloser. + return candidate; + } + + // If the closest encloser is actually a delegation, then the response + // should have been a referral. If it is a DNAME, then it should have + // been + // a DNAME response. + if (candidate.ce_nsec3.hasType(Type.NS) + && !candidate.ce_nsec3.hasType(Type.SOA)) { + // st_log.debug("proveClosestEncloser: closest encloser " + // + "was a delegation!"); + return null; + } + if (candidate.ce_nsec3.hasType(Type.DNAME)) { + // st_log.debug("proveClosestEncloser: closest encloser was a DNAME!"); + return null; + } + + // Otherwise, we need to show that the next closer name is covered. + Name nextClosest = nextClosest(qname, candidate.closestEncloser); + + byte[] nc_hash = hash(nextClosest, params); + candidate.nc_nsec3 = findCoveringNSEC3(nc_hash, zonename, nsec3s, + params, bac); + if (candidate.nc_nsec3 == null) { + // st_log.debug("Could not find proof that the " + // + "closest encloser was the closest encloser"); + return null; + } + + return candidate; } - return candidate; - } - - private static int maxIterations(int baseAlg, int keysize) - { - switch (baseAlg) - { - case DnsSecVerifier.RSA: - if (keysize == 0) return 2500; // the max at 4096 - if (keysize > 2048) return 2500; - if (keysize > 1024) return 500; - if (keysize > 0) return 150; - break; - case DnsSecVerifier.DSA: - if (keysize == 0) return 5000; // the max at 2048; - if (keysize > 1024) return 5000; - if (keysize > 0) return 1500; - break; - } - return -1; - } - - private static boolean validIterations(NSEC3Parameters nsec3params, - RRset dnskey_rrset, DnsSecVerifier verifier) - { - // for now, we return the maximum iterations based simply on the key - // algorithms that may have been used to sign the NSEC3 RRsets. - - int max_iterations = 0; - for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) - { - DNSKEYRecord dnskey = (DNSKEYRecord) i.next(); - int baseAlg = verifier.baseAlgorithm(dnskey.getAlgorithm()); - int iters = maxIterations(baseAlg, 0); - max_iterations = max_iterations < iters ? iters : max_iterations; - } - - if (nsec3params.iterations > max_iterations) return false; - - return true; - } - - /** - * Determine if all of the NSEC3s in a response are legally ignoreable - * (i.e., their presence should lead to an INSECURE result). Currently, this - * is solely based on iterations. - * - * @param nsec3s The list of NSEC3s. If there is more than one set of NSEC3 - * parameters present, this test will not be performed. - * @param dnskey_rrset The set of validating DNSKEYs. - * @param verifier The verifier used to verify the NSEC3 RRsets. This is - * solely used to map algorithm aliases. - * @return true if all of the NSEC3s can be legally ignored, false if not. - */ - public static boolean allNSEC3sIgnoreable(List nsec3s, RRset dnskey_rrset, DnsSecVerifier verifier) - { - NSEC3Parameters params = nsec3Parameters(nsec3s); - if (params == null) return false; - - return !validIterations(params, dnskey_rrset, verifier); - } - - /** - * Determine if the set of NSEC3 records provided with a response prove NAME - * ERROR. This means that the NSEC3s prove a) the closest encloser exists, - * b) the direct child of the closest encloser towards qname doesn't exist, - * and c) *.closest encloser does not exist. - * - * @param nsec3s The list of NSEC3s. - * @param qname The query name to check against. - * @param zonename This is the name of the zone that the NSEC3s belong to. - * This may be discovered in any number of ways. A good one is to - * use the signerName from the NSEC3 record's RRSIG. - * @return SecurityStatus.SECURE of the Name Error is proven by the NSEC3 - * RRs, BOGUS if not, INSECURE if all of the NSEC3s could be validly - * ignored. - */ - public static boolean proveNameError(List nsec3s, Name qname, Name zonename) - { - if (nsec3s == null || nsec3s.size() == 0) return false; - - NSEC3Parameters nsec3params = nsec3Parameters(nsec3s); - if (nsec3params == null) - { -// st_log.debug("Could not find a single set of " + -// "NSEC3 parameters (multiple parameters present)."); - return false; - } - - ByteArrayComparator bac = new ByteArrayComparator(); - - // First locate and prove the closest encloser to qname. We will use the - // variant that fails if the closest encloser turns out to be qname. - CEResponse ce = proveClosestEncloser(qname, - zonename, - nsec3s, - nsec3params, - bac, - true); - - if (ce == null) - { -// st_log.debug("proveNameError: failed to prove a closest encloser."); - return false; + private static int maxIterations(int baseAlg, int keysize) { + switch (baseAlg) { + case DnsSecVerifier.RSA: + if (keysize == 0) return 2500; // the max at 4096 + if (keysize > 2048) return 2500; + if (keysize > 1024) return 500; + if (keysize > 0) return 150; + break; + case DnsSecVerifier.DSA: + if (keysize == 0) return 5000; // the max at 2048; + if (keysize > 1024) return 5000; + if (keysize > 0) return 1500; + break; + } + return -1; } - // At this point, we know that qname does not exist. Now we need to prove - // that the wildcard does not exist. - Name wc = ceWildcard(ce.closestEncloser); - byte[] wc_hash = hash(wc, nsec3params); - NSEC3Record nsec3 = findCoveringNSEC3(wc_hash, - zonename, - nsec3s, - nsec3params, - bac); - if (nsec3 == null) - { -// st_log.debug("proveNameError: could not prove that the " -// + "applicable wildcard did not exist."); - return false; + @SuppressWarnings("unchecked") + private static boolean validIterations(NSEC3Parameters nsec3params, + RRset dnskey_rrset, + DnsSecVerifier verifier) { + // for now, we return the maximum iterations based simply on the key + // algorithms that may have been used to sign the NSEC3 RRsets. + + int max_iterations = 0; + for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) { + DNSKEYRecord dnskey = (DNSKEYRecord) i.next(); + int baseAlg = verifier.baseAlgorithm(dnskey.getAlgorithm()); + int iters = maxIterations(baseAlg, 0); + max_iterations = max_iterations < iters ? iters : max_iterations; + } + + if (nsec3params.iterations > max_iterations) return false; + + return true; } - return true; - } + /** + * Determine if all of the NSEC3s in a response are legally ignoreable + * (i.e., their presence should lead to an INSECURE result). Currently, this + * is solely based on iterations. + * + * @param nsec3s + * The list of NSEC3s. If there is more than one set of NSEC3 + * parameters present, this test will not be performed. + * @param dnskey_rrset + * The set of validating DNSKEYs. + * @param verifier + * The verifier used to verify the NSEC3 RRsets. This is solely + * used to map algorithm aliases. + * @return true if all of the NSEC3s can be legally ignored, false if not. + */ + public static boolean allNSEC3sIgnoreable(List nsec3s, + RRset dnskey_rrset, + DnsSecVerifier verifier) { + NSEC3Parameters params = nsec3Parameters(nsec3s); + if (params == null) return false; - /** - * Determine if the set of NSEC3 records provided with a response prove NAME - * ERROR when qtype = NSEC3. This is a special case, and (currently anyway) - * it suffices to simply prove that the NSEC3 RRset itself does not exist, - * without proving that no wildcard could have generated it, etc.. - * - * @param nsec3s The list of NSEC3s. - * @param qname The query name to check against. - * @param zonename This is the name of the zone that the NSEC3s belong to. - * This may be discovered in any number of ways. A good one is to - * use the signerName from the NSEC3 record's RRSIG. - * @return true of the Name Error is proven by the NSEC3 RRs, false if not. - */ - // public static boolean proveNSEC3NameError(List nsec3s, Name qname, - // Name zonename) - // { - // if (nsec3s == null || nsec3s.size() == 0) return false; - // - // for (Iterator i = nsec3s.iterator(); i.hasNext(); ) - // { - // NSEC3Record nsec3 = (NSEC3Record) i.next(); - // - // // Convert owner and next into Names. - // Name owner = nsec3.getName(); - // Name next = null; - // try - // { - // next = new Name(base32.toString(nsec3.getNext()), zonename); - // } - // catch (TextParseException e) - // { - // continue; - // } - // - // // Now see if qname is covered by the NSEC3. - // - // // normal case, owner < qname < next. - // if (owner.compareTo(next) < 0 && owner.compareTo(qname) < 0 && - // next.compareTo(qname) > 0) - // { - // st_log.debug("proveNSEC3NameError: found a covering NSEC3: " + nsec3); - // return true; - // } - // // end-of-zone case: next < owner and qname > owner || qname < next. - // if (owner.compareTo(next) > 0 && (owner.compareTo(qname) < 0 || - // next.compareTo(qname) > 0)) - // { - // st_log.debug("proveNSEC3NameError: found a covering NSEC3: " + nsec3); - // return true; - // } - // } - // - // st_log.debug("proveNSEC3NameError: did not find a covering NSEC3"); - // return false; - // } - /** - * Determine if the NSEC3s provided in a response prove the NOERROR/NODATA - * status. There are a number of different variants to this: - * - * 1) Normal NODATA -- qname is matched to an NSEC3 record, type is not - * present. - * - * 2) ENT NODATA -- because there must be NSEC3 record for - * empty-non-terminals, this is the same as #1. - * - * 3) NSEC3 ownername NODATA -- qname matched an existing, lone NSEC3 - * ownername, but qtype was not NSEC3. NOTE: as of nsec-05, this case no - * longer exists. - * - * 4) Wildcard NODATA -- A wildcard matched the name, but not the type. - * - * 5) Opt-In DS NODATA -- the qname is covered by an opt-in span and qtype == - * DS. (or maybe some future record with the same parent-side-only property) - * - * @param nsec3s The NSEC3Records to consider. - * @param qname The qname in question. - * @param qtype The qtype in question. - * @param zonename The name of the zone that the NSEC3s came from. - * @return true if the NSEC3s prove the proposition. - */ - public static boolean proveNodata(List nsec3s, Name qname, int qtype, - Name zonename) - { - if (nsec3s == null || nsec3s.size() == 0) return false; - - NSEC3Parameters nsec3params = nsec3Parameters(nsec3s); - if (nsec3params == null) - { -// st_log.debug("could not find a single set of " -// + "NSEC3 parameters (multiple parameters present)"); - return false; - } - ByteArrayComparator bac = new ByteArrayComparator(); - - NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params), - zonename, - nsec3s, - nsec3params, - bac); - // Cases 1 & 2. - if (nsec3 != null) - { - if (nsec3.hasType(qtype)) - { -// st_log.debug("proveNodata: Matching NSEC3 proved that type existed!"); - return false; - } - if (nsec3.hasType(Type.CNAME)) - { -// st_log.debug("proveNodata: Matching NSEC3 proved " -// + "that a CNAME existed!"); - return false; - } - return true; + return !validIterations(params, dnskey_rrset, verifier); } - // For cases 3 - 5, we need the proven closest encloser, and it can't - // match qname. Although, at this point, we know that it won't since we - // just checked that. - CEResponse ce = proveClosestEncloser(qname, - zonename, - nsec3s, - nsec3params, - bac, - true); + /** + * Determine if the set of NSEC3 records provided with a response prove NAME + * ERROR. This means that the NSEC3s prove a) the closest encloser exists, + * b) the direct child of the closest encloser towards qname doesn't exist, + * and c) *.closest encloser does not exist. + * + * @param nsec3s + * The list of NSEC3s. + * @param qname + * The query name to check against. + * @param zonename + * This is the name of the zone that the NSEC3s belong to. This + * may be discovered in any number of ways. A good one is to use + * the signerName from the NSEC3 record's RRSIG. + * @return SecurityStatus.SECURE of the Name Error is proven by the NSEC3 + * RRs, BOGUS if not, INSECURE if all of the NSEC3s could be validly + * ignored. + */ + public static boolean proveNameError(List nsec3s, Name qname, + Name zonename) { + if (nsec3s == null || nsec3s.size() == 0) return false; - // At this point, not finding a match or a proven closest encloser is a - // problem. - if (ce == null) - { -// st_log.debug("proveNodata: did not match qname, " -// + "nor found a proven closest encloser."); - return false; + NSEC3Parameters nsec3params = nsec3Parameters(nsec3s); + if (nsec3params == null) { + // st_log.debug("Could not find a single set of " + + // "NSEC3 parameters (multiple parameters present)."); + return false; + } + + ByteArrayComparator bac = new ByteArrayComparator(); + + // First locate and prove the closest encloser to qname. We will use the + // variant that fails if the closest encloser turns out to be qname. + CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s, + nsec3params, bac, true); + + if (ce == null) { + // st_log.debug("proveNameError: failed to prove a closest encloser."); + return false; + } + + // At this point, we know that qname does not exist. Now we need to + // prove + // that the wildcard does not exist. + Name wc = ceWildcard(ce.closestEncloser); + byte[] wc_hash = hash(wc, nsec3params); + NSEC3Record nsec3 = findCoveringNSEC3(wc_hash, zonename, nsec3s, + nsec3params, bac); + if (nsec3 == null) { + // st_log.debug("proveNameError: could not prove that the " + // + "applicable wildcard did not exist."); + return false; + } + + return true; } - // Case 3: REMOVED + + /** + * Determine if the NSEC3s provided in a response prove the NOERROR/NODATA + * status. There are a number of different variants to this: + * + * 1) Normal NODATA -- qname is matched to an NSEC3 record, type is not + * present. + * + * 2) ENT NODATA -- because there must be NSEC3 record for + * empty-non-terminals, this is the same as #1. + * + * 3) NSEC3 ownername NODATA -- qname matched an existing, lone NSEC3 + * ownername, but qtype was not NSEC3. NOTE: as of nsec-05, this case no + * longer exists. + * + * 4) Wildcard NODATA -- A wildcard matched the name, but not the type. + * + * 5) Opt-In DS NODATA -- the qname is covered by an opt-in span and qtype + * == DS. (or maybe some future record with the same parent-side-only + * property) + * + * @param nsec3s + * The NSEC3Records to consider. + * @param qname + * The qname in question. + * @param qtype + * The qtype in question. + * @param zonename + * The name of the zone that the NSEC3s came from. + * @return true if the NSEC3s prove the proposition. + */ + public static boolean proveNodata(List nsec3s, Name qname, + int qtype, Name zonename) { + if (nsec3s == null || nsec3s.size() == 0) return false; - // Case 4: - Name wc = ceWildcard(ce.closestEncloser); - nsec3 = findMatchingNSEC3(hash(wc, nsec3params), - zonename, - nsec3s, - nsec3params, - bac); + NSEC3Parameters nsec3params = nsec3Parameters(nsec3s); + if (nsec3params == null) { + // st_log.debug("could not find a single set of " + // + "NSEC3 parameters (multiple parameters present)"); + return false; + } + ByteArrayComparator bac = new ByteArrayComparator(); - if (nsec3 != null) - { - if (nsec3.hasType(qtype)) - { -// st_log.debug("proveNodata: matching wildcard had qtype!"); - return false; - } - return true; + NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params), + zonename, nsec3s, nsec3params, + bac); + // Cases 1 & 2. + if (nsec3 != null) { + if (nsec3.hasType(qtype)) { + // st_log.debug("proveNodata: Matching NSEC3 proved that type existed!"); + return false; + } + if (nsec3.hasType(Type.CNAME)) { + // st_log.debug("proveNodata: Matching NSEC3 proved " + // + "that a CNAME existed!"); + return false; + } + return true; + } + + // For cases 3 - 5, we need the proven closest encloser, and it can't + // match qname. Although, at this point, we know that it won't since we + // just checked that. + CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s, + nsec3params, bac, true); + + // At this point, not finding a match or a proven closest encloser is a + // problem. + if (ce == null) { + // st_log.debug("proveNodata: did not match qname, " + // + "nor found a proven closest encloser."); + return false; + } + + // Case 3: REMOVED + + // Case 4: + Name wc = ceWildcard(ce.closestEncloser); + nsec3 = findMatchingNSEC3(hash(wc, nsec3params), zonename, nsec3s, + nsec3params, bac); + + if (nsec3 != null) { + if (nsec3.hasType(qtype)) { + // st_log.debug("proveNodata: matching wildcard had qtype!"); + return false; + } + return true; + } + + // Case 5. + if (qtype != Type.DS) { + // st_log.debug("proveNodata: could not find matching NSEC3, " + // + + // "nor matching wildcard, and qtype is not DS -- no more options."); + return false; + } + + // We need to make sure that the covering NSEC3 is opt-in. + if (!ce.nc_nsec3.getOptInFlag()) { + // st_log.debug("proveNodata: covering NSEC3 was not " + // + "opt-in in an opt-in DS NOERROR/NODATA case."); + return false; + } + + return true; } - // Case 5. - if (qtype != Type.DS) - { -// st_log.debug("proveNodata: could not find matching NSEC3, " -// + "nor matching wildcard, and qtype is not DS -- no more options."); - return false; + /** + * Prove that a positive wildcard match was appropriate (no direct match + * RRset). + * + * @param nsec3s + * The NSEC3 records to work with. + * @param qname + * The qname that was matched to the wildcard + * @param zonename + * The name of the zone that the NSEC3s come from. + * @param wildcard + * The purported wildcard that matched. + * @return true if the NSEC3 records prove this case. + */ + public static boolean proveWildcard(List nsec3s, Name qname, + Name zonename, Name wildcard) { + if (nsec3s == null || nsec3s.size() == 0) return false; + if (qname == null || wildcard == null) return false; + + NSEC3Parameters nsec3params = nsec3Parameters(nsec3s); + if (nsec3params == null) { + // st_log.debug("couldn't find a single set of NSEC3 parameters (multiple parameters present)."); + return false; + } + + ByteArrayComparator bac = new ByteArrayComparator(); + + // We know what the (purported) closest encloser is by just looking at + // the + // supposed generating wildcard. + CEResponse candidate = new CEResponse(new Name(wildcard, 1), null); + + // Now we still need to prove that the original data did not exist. + // Otherwise, we need to show that the next closer name is covered. + Name nextClosest = nextClosest(qname, candidate.closestEncloser); + candidate.nc_nsec3 = findCoveringNSEC3(hash(nextClosest, nsec3params), + zonename, nsec3s, nsec3params, + bac); + + if (candidate.nc_nsec3 == null) { + // st_log.debug("proveWildcard: did not find a covering NSEC3 " + // + "that covered the next closer name to " + qname + " from " + // + candidate.closestEncloser + " (derived from wildcard " + + // wildcard + // + ")"); + return false; + } + + return true; } - // We need to make sure that the covering NSEC3 is opt-in. - if (!ce.nc_nsec3.getOptInFlag()) - { -// st_log.debug("proveNodata: covering NSEC3 was not " -// + "opt-in in an opt-in DS NOERROR/NODATA case."); - return false; - } + /** + * Prove that a DS response either had no DS, or wasn't a delegation point. + * + * Fundamentally there are two cases here: normal NODATA and Opt-In NODATA. + * + * @param nsec3s + * The NSEC3 RRs to examine. + * @param qname + * The name of the DS in question. + * @param zonename + * The name of the zone that the NSEC3 RRs come from. + * + * @return SecurityStatus.SECURE if it was proven that there is no DS in a + * secure (i.e., not opt-in) way, SecurityStatus.INSECURE if there + * was no DS in an insecure (i.e., opt-in) way, + * SecurityStatus.INDETERMINATE if it was clear that this wasn't a + * delegation point, and SecurityStatus.BOGUS if the proofs don't + * work out. + */ + public static int proveNoDS(List nsec3s, Name qname, + Name zonename) { + if (nsec3s == null || nsec3s.size() == 0) return SecurityStatus.BOGUS; - return true; - } + NSEC3Parameters nsec3params = nsec3Parameters(nsec3s); + if (nsec3params == null) { + // st_log.debug("couldn't find a single set of " + + // "NSEC3 parameters (multiple parameters present)."); + return SecurityStatus.BOGUS; + } + ByteArrayComparator bac = new ByteArrayComparator(); - /** - * Prove that a positive wildcard match was appropriate (no direct match - * RRset). - * - * @param nsec3s The NSEC3 records to work with. - * @param qname The qname that was matched to the wildard - * @param zonename The name of the zone that the NSEC3s come from. - * @param wildcard The purported wildcard that matched. - * @return true if the NSEC3 records prove this case. - */ - public static boolean proveWildcard(List nsec3s, Name qname, Name zonename, - Name wildcard) - { - if (nsec3s == null || nsec3s.size() == 0) return false; - if (qname == null || wildcard == null) return false; + // Look for a matching NSEC3 to qname -- this is the normal NODATA case. + NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params), + zonename, nsec3s, nsec3params, + bac); - NSEC3Parameters nsec3params = nsec3Parameters(nsec3s); - if (nsec3params == null) - { -// st_log.debug("couldn't find a single set of NSEC3 parameters (multiple parameters present)."); - return false; - } - - ByteArrayComparator bac = new ByteArrayComparator(); + if (nsec3 != null) { + // If the matching NSEC3 has the SOA bit set, it is from the wrong + // zone + // (the child instead of the parent). If it has the DS bit set, then + // we + // were lied to. + if (nsec3.hasType(Type.SOA) || nsec3.hasType(Type.DS)) { + return SecurityStatus.BOGUS; + } + // If the NSEC3 RR doesn't have the NS bit set, then this wasn't a + // delegation point. + if (!nsec3.hasType(Type.NS)) return SecurityStatus.INDETERMINATE; - // We know what the (purported) closest encloser is by just looking at the - // supposed generating wildcard. - CEResponse candidate = new CEResponse(new Name(wildcard, 1), null); + // Otherwise, this proves no DS. + return SecurityStatus.SECURE; + } - // Now we still need to prove that the original data did not exist. - // Otherwise, we need to show that the next closer name is covered. - Name nextClosest = nextClosest(qname, candidate.closestEncloser); - candidate.nc_nsec3 = findCoveringNSEC3(hash(nextClosest, nsec3params), - zonename, - nsec3s, - nsec3params, - bac); + // Otherwise, we are probably in the opt-in case. + CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s, + nsec3params, bac, true); + if (ce == null) { + return SecurityStatus.BOGUS; + } - if (candidate.nc_nsec3 == null) - { -// st_log.debug("proveWildcard: did not find a covering NSEC3 " -// + "that covered the next closer name to " + qname + " from " -// + candidate.closestEncloser + " (derived from wildcard " + wildcard -// + ")"); - return false; - } + // If we had the closest encloser proof, then we need to check that the + // covering NSEC3 was opt-in -- the proveClosestEncloser step already + // checked to see if the closest encloser was a delegation or DNAME. + if (ce.nc_nsec3.getOptInFlag()) { + return SecurityStatus.SECURE; + } - return true; - } - - /** - * Prove that a DS response either had no DS, or wasn't a delegation point. - * - * Fundamentally there are two cases here: normal NODATA and Opt-In NODATA. - * - * @param nsec3s The NSEC3 RRs to examine. - * @param qname The name of the DS in question. - * @param zonename The name of the zone that the NSEC3 RRs come from. - * - * @return SecurityStatus.SECURE if it was proven that there is no DS in a - * secure (i.e., not opt-in) way, SecurityStatus.INSECURE if there - * was no DS in an insecure (i.e., opt-in) way, - * SecurityStatus.INDETERMINATE if it was clear that this wasn't a - * delegation point, and SecurityStatus.BOGUS if the proofs don't - * work out. - */ - public static int proveNoDS(List nsec3s, Name qname, Name zonename) - { - if (nsec3s == null || nsec3s.size() == 0) return SecurityStatus.BOGUS; - - NSEC3Parameters nsec3params = nsec3Parameters(nsec3s); - if (nsec3params == null) - { -// st_log.debug("couldn't find a single set of " + -// "NSEC3 parameters (multiple parameters present)."); - return SecurityStatus.BOGUS; - } - ByteArrayComparator bac = new ByteArrayComparator(); - - // Look for a matching NSEC3 to qname -- this is the normal NODATA case. - NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params), - zonename, - nsec3s, - nsec3params, - bac); - - if (nsec3 != null) - { - // If the matching NSEC3 has the SOA bit set, it is from the wrong zone - // (the child instead of the parent). If it has the DS bit set, then we - // were lied to. - if (nsec3.hasType(Type.SOA) || nsec3.hasType(Type.DS)) - { return SecurityStatus.BOGUS; - } - // If the NSEC3 RR doesn't have the NS bit set, then this wasn't a - // delegation point. - if (!nsec3.hasType(Type.NS)) return SecurityStatus.INDETERMINATE; - - // Otherwise, this proves no DS. - return SecurityStatus.SECURE; } - // Otherwise, we are probably in the opt-in case. - CEResponse ce = proveClosestEncloser(qname, - zonename, - nsec3s, - nsec3params, - bac, - true); - if (ce == null) - { - return SecurityStatus.BOGUS; - } - - // If we had the closest encloser proof, then we need to check that the - // covering NSEC3 was opt-in -- the proveClosestEncloser step already - // checked to see if the closest encloser was a delegation or DNAME. - if (ce.nc_nsec3.getOptInFlag()) - { - return SecurityStatus.SECURE; - } - - return SecurityStatus.BOGUS; - } - } diff --git a/src/com/versign/tat/dnssec/SMessage.java b/src/com/versign/tat/dnssec/SMessage.java index 6525117..aca257b 100644 --- a/src/com/versign/tat/dnssec/SMessage.java +++ b/src/com/versign/tat/dnssec/SMessage.java @@ -36,369 +36,324 @@ import org.xbill.DNS.*; /** * This class represents a DNS message with resolver/validator state. */ -public class SMessage -{ - private Header mHeader; +public class SMessage { + private Header mHeader; - private Record mQuestion; - private OPTRecord mOPTRecord; - private List[] mSection; - private SecurityStatus mSecurityStatus; + private Record mQuestion; + private OPTRecord mOPTRecord; + private List[] mSection; + private SecurityStatus mSecurityStatus; - private static SRRset[] empty_srrset_array = new SRRset[0]; + private static SRRset[] empty_srrset_array = new SRRset[0]; - public SMessage(Header h) - { - mSection = new List[3]; - mHeader = h; - mSecurityStatus = new SecurityStatus(); - } - - public SMessage(int id) - { - this(new Header(id)); - } - - public SMessage() - { - this(new Header(0)); - } - - public SMessage(Message m) - { - this(m.getHeader()); - mQuestion = m.getQuestion(); - mOPTRecord = m.getOPT(); - - for (int i = Section.ANSWER; i <= Section.ADDITIONAL; i++) - { - RRset[] rrsets = m.getSectionRRsets(i); - - for (int j = 0; j < rrsets.length; j++) - { - addRRset(rrsets[j], i); - } - } - } - - public Header getHeader() - { - return mHeader; - } - - public void setHeader(Header h) - { - mHeader = h; - } - - public void setQuestion(Record r) - { - mQuestion = r; - } - - public Record getQuestion() - { - return mQuestion; - } - - public Name getQName() { - return getQuestion().getName(); - } - - public int getQType() { - return getQuestion().getType(); - } - - public int getQClass() { - return getQuestion().getDClass(); - } - - public void setOPT(OPTRecord r) - { - mOPTRecord = r; - } - - public OPTRecord getOPT() - { - return mOPTRecord; - } - - public List getSectionList(int section) - { - if (section <= Section.QUESTION || section > Section.ADDITIONAL) - throw new IllegalArgumentException("Invalid section."); - - if (mSection[section - 1] == null) - { - mSection[section - 1] = new LinkedList(); + @SuppressWarnings("unchecked") + public SMessage(Header h) { + mSection = (List[]) new List[3]; + mHeader = h; + mSecurityStatus = new SecurityStatus(); } - return mSection[section - 1]; - } - - public void addRRset(SRRset srrset, int section) - { - if (section <= Section.QUESTION || section > Section.ADDITIONAL) - throw new IllegalArgumentException("Invalid section"); - - if (srrset.getType() == Type.OPT) - { - mOPTRecord = (OPTRecord) srrset.first(); - return; + public SMessage(int id) { + this(new Header(id)); } - List sectionList = getSectionList(section); - sectionList.add(srrset); - } - - public void addRRset(RRset rrset, int section) - { - if (rrset instanceof SRRset) - { - addRRset((SRRset) rrset, section); - return; + public SMessage() { + this(new Header(0)); } - SRRset srrset = new SRRset(rrset); - addRRset(srrset, section); - } + public SMessage(Message m) { + this(m.getHeader()); + mQuestion = m.getQuestion(); + mOPTRecord = m.getOPT(); - public void prependRRsets(List rrsets, int section) - { - if (section <= Section.QUESTION || section > Section.ADDITIONAL) - throw new IllegalArgumentException("Invalid section"); + for (int i = Section.ANSWER; i <= Section.ADDITIONAL; i++) { + RRset[] rrsets = m.getSectionRRsets(i); - List sectionList = getSectionList(section); - sectionList.addAll(0, rrsets); - } - - public SRRset[] getSectionRRsets(int section) - { - List slist = getSectionList(section); - - return (SRRset[]) slist.toArray(empty_srrset_array); - } - - public SRRset[] getSectionRRsets(int section, int qtype) - { - List slist = getSectionList(section); - - if (slist.size() == 0) return new SRRset[0]; - - ArrayList result = new ArrayList(slist.size()); - for (Iterator i = slist.iterator(); i.hasNext();) - { - SRRset rrset = (SRRset) i.next(); - if (rrset.getType() == qtype) result.add(rrset); - } - - return (SRRset[]) result.toArray(empty_srrset_array); - } - - public void deleteRRset(SRRset rrset, int section) - { - List slist = getSectionList(section); - - if (slist.size() == 0) return; - - slist.remove(rrset); - } - - public void clear(int section) - { - if (section < Section.QUESTION || section > Section.ADDITIONAL) - throw new IllegalArgumentException("Invalid section."); - - if (section == Section.QUESTION) - { - mQuestion = null; - return; - } - if (section == Section.ADDITIONAL) - { - mOPTRecord = null; - } - - mSection[section - 1] = null; - } - - public void clear() - { - for (int s = Section.QUESTION; s <= Section.ADDITIONAL; s++) - { - clear(s); - } - } - - public int getRcode() - { - // FIXME: might want to do what Message does and handle extended rcodes. - return mHeader.getRcode(); - } - - public int getStatus() - { - return mSecurityStatus.getStatus(); - } - - public void setStatus(byte status) - { - mSecurityStatus.setStatus(status); - } - - public SecurityStatus getSecurityStatus() - { - return mSecurityStatus; - } - public void setSecurityStatus(SecurityStatus s) - { - if (s == null) return; - mSecurityStatus = s; - } - - public Message getMessage() - { - // Generate our new message. - Message m = new Message(mHeader.getID()); - - // Convert the header - // We do this for two reasons: 1) setCount() is package scope, so we can't - // do that, and 2) setting the header on a message after creating the - // message frequently gets stuff out of sync, leading to malformed wire - // format messages. - Header h = m.getHeader(); - h.setOpcode(mHeader.getOpcode()); - h.setRcode(mHeader.getRcode()); - for (int i = 0; i < 16; i++) - { - if (Flags.isFlag(i)) { - if (mHeader.getFlag(i)) { - h.setFlag(i); - } else { - h.unsetFlag(i); - } - } - } - - // Add all the records. -- this will set the counts correctly in the - // message header. - - if (mQuestion != null) - { - m.addRecord(mQuestion, Section.QUESTION); - } - - for (int sec = Section.ANSWER; sec <= Section.ADDITIONAL; sec++) - { - List slist = getSectionList(sec); - for (Iterator i = slist.iterator(); i.hasNext();) - { - SRRset rrset = (SRRset) i.next(); - for (Iterator j = rrset.rrs(); j.hasNext();) - { - m.addRecord((Record) j.next(), sec); + for (int j = 0; j < rrsets.length; j++) { + addRRset(rrsets[j], i); + } } - for (Iterator j = rrset.sigs(); j.hasNext();) - { - m.addRecord((Record) j.next(), sec); + } + + public Header getHeader() { + return mHeader; + } + + public void setHeader(Header h) { + mHeader = h; + } + + public void setQuestion(Record r) { + mQuestion = r; + } + + public Record getQuestion() { + return mQuestion; + } + + public Name getQName() { + return getQuestion().getName(); + } + + public int getQType() { + return getQuestion().getType(); + } + + public int getQClass() { + return getQuestion().getDClass(); + } + + public void setOPT(OPTRecord r) { + mOPTRecord = r; + } + + public OPTRecord getOPT() { + return mOPTRecord; + } + + public List getSectionList(int section) { + if (section <= Section.QUESTION || section > Section.ADDITIONAL) + throw new IllegalArgumentException("Invalid section."); + + if (mSection[section - 1] == null) { + mSection[section - 1] = new LinkedList(); } - } + + return (List) mSection[section - 1]; } - if (mOPTRecord != null) - { - m.addRecord(mOPTRecord, Section.ADDITIONAL); + public void addRRset(SRRset srrset, int section) { + if (section <= Section.QUESTION || section > Section.ADDITIONAL) + throw new IllegalArgumentException("Invalid section"); + + if (srrset.getType() == Type.OPT) { + mOPTRecord = (OPTRecord) srrset.first(); + return; + } + + List sectionList = getSectionList(section); + sectionList.add(srrset); } - return m; - } + public void addRRset(RRset rrset, int section) { + if (rrset instanceof SRRset) { + addRRset((SRRset) rrset, section); + return; + } - public int getCount(int section) - { - if (section == Section.QUESTION) - { - return mQuestion == null ? 0 : 1; - } - List sectionList = getSectionList(section); - if (sectionList == null) return 0; - if (sectionList.size() == 0) return 0; - - int count = 0; - for (Iterator i = sectionList.iterator(); i.hasNext(); ) - { - SRRset sr = (SRRset) i.next(); - count += sr.totalSize(); - } - return count; - } - - public String toString() - { - return getMessage().toString(); - } - - /** - * Find a specific (S)RRset in a given section. - * - * @param name the name of the RRset. - * @param type the type of the RRset. - * @param dclass the class of the RRset. - * @param section the section to look in (ANSWER -> ADDITIONAL) - * - * @return The SRRset if found, null otherwise. - */ - public SRRset findRRset(Name name, int type, int dclass, int section) - { - if (section <= Section.QUESTION || section > Section.ADDITIONAL) - throw new IllegalArgumentException("Invalid section."); - - SRRset[] rrsets = getSectionRRsets(section); - - for (int i = 0; i < rrsets.length; i++) - { - if (rrsets[i].getName().equals(name) && rrsets[i].getType() == type - && rrsets[i].getDClass() == dclass) - { - return rrsets[i]; - } + SRRset srrset = new SRRset(rrset); + addRRset(srrset, section); } - return null; - } + public void prependRRsets(List rrsets, int section) { + if (section <= Section.QUESTION || section > Section.ADDITIONAL) + throw new IllegalArgumentException("Invalid section"); - /** - * Find an "answer" RRset. This will look for RRsets in the ANSWER section - * that match the , taking into consideration CNAMEs. - * - * @param qname The starting search name. - * @param qtype The search type. - * @param qclass The search class. - * - * @return a SRRset matching the query. This SRRset may have a different - * name from qname, due to following a CNAME chain. - */ - public SRRset findAnswerRRset(Name qname, int qtype, int qclass) - { - SRRset[] srrsets = getSectionRRsets(Section.ANSWER); - - for (int i = 0; i < srrsets.length; i++) - { - if (srrsets[i].getName().equals(qname) - && srrsets[i].getType() == Type.CNAME) - { - CNAMERecord cname = (CNAMERecord) srrsets[i].first(); - qname = cname.getTarget(); - continue; - } - - if (srrsets[i].getName().equals(qname) && srrsets[i].getType() == qtype - && srrsets[i].getDClass() == qclass) - { - return srrsets[i]; - } + List sectionList = getSectionList(section); + sectionList.addAll(0, rrsets); } - return null; - } + public SRRset[] getSectionRRsets(int section) { + List slist = getSectionList(section); + + return (SRRset[]) slist.toArray(empty_srrset_array); + } + + public SRRset[] getSectionRRsets(int section, int qtype) { + List slist = getSectionList(section); + + if (slist.size() == 0) return new SRRset[0]; + + ArrayList result = new ArrayList(slist.size()); + for (SRRset rrset : slist) { + if (rrset.getType() == qtype) result.add(rrset); + } + + return (SRRset[]) result.toArray(empty_srrset_array); + } + + public void deleteRRset(SRRset rrset, int section) { + List slist = getSectionList(section); + + if (slist.size() == 0) return; + + slist.remove(rrset); + } + + public void clear(int section) { + if (section < Section.QUESTION || section > Section.ADDITIONAL) + throw new IllegalArgumentException("Invalid section."); + + if (section == Section.QUESTION) { + mQuestion = null; + return; + } + if (section == Section.ADDITIONAL) { + mOPTRecord = null; + } + + mSection[section - 1] = null; + } + + public void clear() { + for (int s = Section.QUESTION; s <= Section.ADDITIONAL; s++) { + clear(s); + } + } + + public int getRcode() { + // FIXME: might want to do what Message does and handle extended rcodes. + return mHeader.getRcode(); + } + + public int getStatus() { + return mSecurityStatus.getStatus(); + } + + public void setStatus(byte status) { + mSecurityStatus.setStatus(status); + } + + public SecurityStatus getSecurityStatus() { + return mSecurityStatus; + } + + public void setSecurityStatus(SecurityStatus s) { + if (s == null) return; + mSecurityStatus = s; + } + + public Message getMessage() { + // Generate our new message. + Message m = new Message(mHeader.getID()); + + // Convert the header + // We do this for two reasons: 1) setCount() is package scope, so we + // can't do that, and 2) setting the header on a message after creating + // the message frequently gets stuff out of sync, leading to malformed + // wire format messages. + Header h = m.getHeader(); + h.setOpcode(mHeader.getOpcode()); + h.setRcode(mHeader.getRcode()); + for (int i = 0; i < 16; i++) { + if (Flags.isFlag(i)) { + if (mHeader.getFlag(i)) { + h.setFlag(i); + } else { + h.unsetFlag(i); + } + } + } + + // Add all the records. -- this will set the counts correctly in the + // message header. + + if (mQuestion != null) { + m.addRecord(mQuestion, Section.QUESTION); + } + + for (int sec = Section.ANSWER; sec <= Section.ADDITIONAL; sec++) { + List slist = getSectionList(sec); + for (SRRset rrset : slist) { + for (Iterator j = rrset.rrs(); j.hasNext(); ) { + m.addRecord(j.next(), sec); + } + for (Iterator j = rrset.sigs(); j.hasNext(); ) { + m.addRecord(j.next(), sec); + } + } + } + + if (mOPTRecord != null) { + m.addRecord(mOPTRecord, Section.ADDITIONAL); + } + + return m; + } + + public int getCount(int section) { + if (section == Section.QUESTION) { + return mQuestion == null ? 0 : 1; + } + List sectionList = getSectionList(section); + if (sectionList == null) return 0; + if (sectionList.size() == 0) return 0; + + int count = 0; + for (SRRset sr : sectionList) { + count += sr.totalSize(); + } + + return count; + } + + public String toString() { + return getMessage().toString(); + } + + /** + * Find a specific (S)RRset in a given section. + * + * @param name + * the name of the RRset. + * @param type + * the type of the RRset. + * @param dclass + * the class of the RRset. + * @param section + * the section to look in (ANSWER -> ADDITIONAL) + * + * @return The SRRset if found, null otherwise. + */ + public SRRset findRRset(Name name, int type, int dclass, int section) { + if (section <= Section.QUESTION || section > Section.ADDITIONAL) + throw new IllegalArgumentException("Invalid section."); + + SRRset[] rrsets = getSectionRRsets(section); + + for (int i = 0; i < rrsets.length; i++) { + if (rrsets[i].getName().equals(name) && rrsets[i].getType() == type + && rrsets[i].getDClass() == dclass) { + return rrsets[i]; + } + } + + return null; + } + + /** + * Find an "answer" RRset. This will look for RRsets in the ANSWER section + * that match the , taking into consideration CNAMEs. + * + * @param qname + * The starting search name. + * @param qtype + * The search type. + * @param qclass + * The search class. + * + * @return a SRRset matching the query. This SRRset may have a different + * name from qname, due to following a CNAME chain. + */ + public SRRset findAnswerRRset(Name qname, int qtype, int qclass) { + SRRset[] srrsets = getSectionRRsets(Section.ANSWER); + + for (int i = 0; i < srrsets.length; i++) { + if (srrsets[i].getName().equals(qname) + && srrsets[i].getType() == Type.CNAME) { + CNAMERecord cname = (CNAMERecord) srrsets[i].first(); + qname = cname.getTarget(); + continue; + } + + if (srrsets[i].getName().equals(qname) + && srrsets[i].getType() == qtype + && srrsets[i].getDClass() == qclass) { + return srrsets[i]; + } + } + + return null; + } } \ No newline at end of file diff --git a/src/com/versign/tat/dnssec/SRRset.java b/src/com/versign/tat/dnssec/SRRset.java index 18b16b2..71880a0 100644 --- a/src/com/versign/tat/dnssec/SRRset.java +++ b/src/com/versign/tat/dnssec/SRRset.java @@ -1,5 +1,5 @@ /* - * Copyright (c) 2005 VeriSign. All rights reserved. + * Copyright (c) 2009 VeriSign. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: @@ -34,152 +34,103 @@ import org.xbill.DNS.*; /** * A version of the RRset class overrides the standard security status. */ -public class SRRset extends RRset -{ - private SecurityStatus mSecurityStatus; - - /** Create a new, blank SRRset. */ - public SRRset() - { - super(); - mSecurityStatus = new SecurityStatus(); - } +public class SRRset extends RRset { + private SecurityStatus mSecurityStatus; - /** - * Create a new SRRset from an existing RRset. This SRRset will contain that - * same internal Record objects as the original RRset. - */ - @SuppressWarnings("unchecked") // org.xbill.DNS.RRset isn't typesafe-aware. -public SRRset(RRset r) - { - this(); - - for (Iterator i = r.rrs(); i.hasNext();) - { - addRR((Record) i.next()); + /** Create a new, blank SRRset. */ + public SRRset() { + super(); + mSecurityStatus = new SecurityStatus(); } - for (Iterator i = r.sigs(); i.hasNext();) - { - addRR((Record) i.next()); - } - } - - /** - * Clone this SRRset, giving the copy a new TTL. The copy is independent - * from the original except for the security status. - * - * @param withNewTTL The new TTL to apply to the RRset. This applies to - * contained RRsig records as well. - * @return The cloned SRRset. - */ -// public SRRset cloneSRRset(long withNewTTL) -// { -// SRRset nr = new SRRset(); -// -// for (Iterator i = rrs(); i.hasNext();) -// { -// nr.addRR(((Record) i.next()).withTTL(withNewTTL)); -// } -// for (Iterator i = sigs(); i.hasNext();) -// { -// nr.addRR(((Record) i.next()).withTTL(withNewTTL)); -// } -// -// nr.mSecurityStatus = mSecurityStatus; -// -// return nr; -// } - - public SRRset cloneSRRsetNoSigs() - { - SRRset nr = new SRRset(); - for (Iterator i = rrs(); i.hasNext();) - { - // NOTE: should this clone the records as well? - nr.addRR((Record) i.next()); - } - // Do not copy the SecurityStatus reference - return nr; - } - - - /** - * Return the current security status (generally: UNCHECKED, BOGUS, or - * SECURE). - */ - public int getSecurity() - { - return getSecurityStatus(); - } + /** + * Create a new SRRset from an existing RRset. This SRRset will contain that + * same internal Record objects as the original RRset. + */ + @SuppressWarnings("unchecked") + // org.xbill.DNS.RRset isn't typesafe-aware. + public SRRset(RRset r) { + this(); - /** - * Return the current security status (generally: UNCHECKED, BOGUS, or - * SECURE). - */ - public int getSecurityStatus() - { - return mSecurityStatus.getStatus(); - } + for (Iterator i = r.rrs(); i.hasNext();) { + addRR((Record) i.next()); + } - /** - * Set the current security status for this SRRset. This status will be - * shared amongst all copies of this SRRset (created with cloneSRRset()) - */ - public void setSecurityStatus(byte status) - { - mSecurityStatus.setStatus(status); - } + for (Iterator i = r.sigs(); i.hasNext();) { + addRR((Record) i.next()); + } + } - public int totalSize() { - int num_sigs = 0; - for (Iterator i = sigs(); i.hasNext(); ) { - num_sigs++; - } - return size() + num_sigs; - } - - /** - * @return The total number of records (data + sigs) in the SRRset. - */ - public int getNumRecords() - { - return totalSize(); - } + /** + * Return the current security status (generally: UNCHECKED, BOGUS, or + * SECURE). + */ + public int getSecurity() { + return getSecurityStatus(); + } - public RRSIGRecord firstSig() { - for (Iterator i = sigs(); i.hasNext(); ) { - return (RRSIGRecord) i.next(); - } - return null; - } - /** - * @return true if this RRset has RRSIG records that cover data records. - * (i.e., RRSIG SRRsets return false) - */ - public boolean isSigned() - { - if (getType() == Type.RRSIG) return false; - return firstSig() != null; - } + /** + * Return the current security status (generally: UNCHECKED, BOGUS, or + * SECURE). + */ + public byte getSecurityStatus() { + return mSecurityStatus.getStatus(); + } - /** - * @return The "signer" name for this SRRset, if signed, or null if not. - */ - public Name getSignerName() - { - RRSIGRecord sig = (RRSIGRecord) firstSig(); - if (sig == null) return null; - return sig.getSigner(); - } - -// public void setTTL(long ttl) -// { -// if (ttl < 0) -// { -// throw new IllegalArgumentException("ttl can't be less than zero, stupid! was " + ttl); -// } -// super.setTTL(ttl); -// } + /** + * Set the current security status for this SRRset. This status will be + * shared amongst all copies of this SRRset (created with cloneSRRset()) + */ + public void setSecurityStatus(byte status) { + mSecurityStatus.setStatus(status); + } + + public Iterator rrs() { + return (Iterator) rrs(); + } + + public Iterator sigs() { + return (Iterator) sigs(); + } + + public int totalSize() { + int num_sigs = 0; + for (Iterator i = sigs(); i.hasNext();) { + num_sigs++; + } + return size() + num_sigs; + } + + /** + * @return The total number of records (data + sigs) in the SRRset. + */ + public int getNumRecords() { + return totalSize(); + } + + public RRSIGRecord firstSig() { + for (Iterator i = sigs(); i.hasNext();) { + return i.next(); + } + return null; + } + + /** + * @return true if this RRset has RRSIG records that cover data records. + * (i.e., RRSIG SRRsets return false) + */ + public boolean isSigned() { + if (getType() == Type.RRSIG) return false; + return firstSig() != null; + } + + /** + * @return The "signer" name for this SRRset, if signed, or null if not. + */ + public Name getSignerName() { + RRSIGRecord sig = (RRSIGRecord) firstSig(); + if (sig == null) return null; + return sig.getSigner(); + } } diff --git a/src/com/versign/tat/dnssec/SignUtils.java b/src/com/versign/tat/dnssec/SignUtils.java index ac775ed..8316407 100644 --- a/src/com/versign/tat/dnssec/SignUtils.java +++ b/src/com/versign/tat/dnssec/SignUtils.java @@ -47,428 +47,430 @@ import org.xbill.DNS.Name; import org.xbill.DNS.RRSIGRecord; import org.xbill.DNS.RRset; import org.xbill.DNS.Record; -import org.xbill.DNS.utils.base64; /** * This class contains a bunch of utility methods that are generally useful in * signing and verifying rrsets. - * - * @author David Blacka (original) - * @author $Author$ - * @version $Revision$ */ -public class SignUtils -{ +public class SignUtils { - /** - * This class implements a basic comparitor for byte arrays. It is primarily - * useful for comparing RDATA portions of DNS records in doing DNSSEC - * canonical ordering. - * - * @author David Blacka (original) - */ - public static class ByteArrayComparator implements Comparator - { - private int mOffset = 0; - private boolean mDebug = false; + /** + * This class implements a basic comparator for byte arrays. It is primarily + * useful for comparing RDATA portions of DNS records in doing DNSSEC + * canonical ordering. + */ + public static class ByteArrayComparator implements Comparator { + private int mOffset = 0; + private boolean mDebug = false; - public ByteArrayComparator() - { - } - - public ByteArrayComparator(int offset, boolean debug) - { - mOffset = offset; - mDebug = debug; - } - - public int compare(Object o1, Object o2) throws ClassCastException - { - byte[] b1 = (byte[]) o1; - byte[] b2 = (byte[]) o2; - - for (int i = mOffset; i < b1.length && i < b2.length; i++) - { - if (b1[i] != b2[i]) - { - if (mDebug) - { - System.out.println("offset " + i + " differs (this is " - + (i - mOffset) + " bytes in from our offset.)"); - } - return (b1[i] & 0xFF) - (b2[i] & 0xFF); + public ByteArrayComparator() { } - } - return b1.length - b2.length; - } - } + public ByteArrayComparator(int offset, boolean debug) { + mOffset = offset; + mDebug = debug; + } - // private static final int DSA_SIGNATURE_LENGTH = 20; - private static final int ASN1_INT = 0x02; - private static final int ASN1_SEQ = 0x30; + public int compare(byte[] b1, byte[] b2) throws ClassCastException { + for (int i = mOffset; i < b1.length && i < b2.length; i++) { + if (b1[i] != b2[i]) { + if (mDebug) { + System.out.println("offset " + i + " differs (this is " + + (i - mOffset) + + " bytes in from our offset.)"); + } + return (b1[i] & 0xFF) - (b2[i] & 0xFF); + } + } - public static final int RR_NORMAL = 0; - public static final int RR_DELEGATION = 1; - public static final int RR_GLUE = 2; - public static final int RR_INVALID = 3; - - /** - * Generate from some basic information a prototype SIG RR containing - * everything but the actual signature itself. - * - * @param rrset the RRset being signed. - * @param signer the name of the signing key - * @param alg the algorithm of the signing key - * @param keyid the keyid (or footprint) of the signing key - * @param start the SIG inception time. - * @param expire the SIG expiration time. - * @param sig_ttl the TTL of the resulting SIG record. - * @return a prototype signature based on the RRset and key information. - */ - public static RRSIGRecord generatePreRRSIG(RRset rrset, Name signer, - int alg, int keyid, Date start, Date expire, long sig_ttl) - { - return new RRSIGRecord(rrset.getName(), rrset.getDClass(), sig_ttl, rrset - .getType(), alg, rrset.getTTL(), expire, start, keyid, signer, null); - } - - /** - * Generate from some basic information a prototype SIG RR containing - * everything but the actual signature itself. - * - * @param rrset the RRset being signed. - * @param key the public KEY RR counterpart to the key being used to sign - * the RRset - * @param start the SIG inception time. - * @param expire the SIG expiration time. - * @param sig_ttl the TTL of the resulting SIG record. - * @return a prototype signature based on the RRset and key information. - */ - public static RRSIGRecord generatePreRRSIG(RRset rrset, DNSKEYRecord key, - Date start, Date expire, long sig_ttl) - { - return generatePreRRSIG(rrset, key.getName(), key.getAlgorithm(), key - .getFootprint(), start, expire, sig_ttl); - } - - /** - * Generate from some basic information a prototype SIG RR containing - * everything but the actual signature itself. - * - * @param rec the DNS record being signed (forming an entire RRset). - * @param key the public KEY RR counterpart to the key signing the record. - * @param start the SIG inception time. - * @param expire the SIG expiration time. - * @param sig_ttl the TTL of the result SIG record. - * @return a prototype signature based on the Record and key information. - */ - public static RRSIGRecord generatePreRRSIG(Record rec, DNSKEYRecord key, - Date start, Date expire, long sig_ttl) - { - return new RRSIGRecord(rec.getName(), rec.getDClass(), sig_ttl, rec - .getType(), key.getAlgorithm(), rec.getTTL(), expire, start, key - .getFootprint(), key.getName(), null); - } - - /** - * Generate the binary image of the prototype SIG RR. - * - * @param presig the SIG RR prototype. - * @return the RDATA portion of the prototype SIG record. This forms the - * first part of the data to be signed. - */ - private static byte[] generatePreSigRdata(RRSIGRecord presig) - { - // Generate the binary image; - DNSOutput image = new DNSOutput(); - - // precalc some things - int start_time = (int) (presig.getTimeSigned().getTime() / 1000); - int expire_time = (int) (presig.getExpire().getTime() / 1000); - Name signer = presig.getSigner(); - - // first write out the partial SIG record (this is the SIG RDATA - // minus the actual signature. - image.writeU16(presig.getTypeCovered()); - image.writeU8(presig.getAlgorithm()); - image.writeU8(presig.getLabels()); - image.writeU32((int) presig.getOrigTTL()); - image.writeU32(expire_time); - image.writeU32(start_time); - image.writeU16(presig.getFootprint()); - image.writeByteArray(signer.toWireCanonical()); - - return image.toByteArray(); - } - - /** - * Calculate the canonical wire line format of the RRset. - * - * @param rrset the RRset to convert. - * @param ttl the TTL to use when canonicalizing -- this is generally the - * TTL of the signature if there is a pre-existing signature. If - * not it is just the ttl of the rrset itself. - * @param labels the labels field of the signature, or 0. - * @return the canonical wire line format of the rrset. This is the second - * part of data to be signed. - */ - public static byte[] generateCanonicalRRsetData(RRset rrset, long ttl, - int labels) - { - DNSOutput image = new DNSOutput(); - - if (ttl == 0) ttl = rrset.getTTL(); - Name n = rrset.getName(); - if (labels == 0) - { - labels = n.labels(); - } - else - { - // correct for Name()'s conception of label count. - labels++; - } - boolean wildcardName = false; - if (n.labels() != labels) - { - n = n.wild(n.labels() - labels); - wildcardName = true; -// log.trace("Detected wildcard expansion: " + rrset.getName() + " changed to " + n); + return b1.length - b2.length; + } } - // now convert load the wire format records in the RRset into a - // list of byte arrays. - ArrayList canonical_rrs = new ArrayList(); - for (Iterator i = rrset.rrs(); i.hasNext();) - { - Record r = (Record) i.next(); - if (r.getTTL() != ttl || wildcardName) - { - // If necessary, we need to create a new record with a new ttl or ownername. - // In the TTL case, this avoids changing the ttl in the response. - r = Record.newRecord(n, r.getType(), r.getDClass(), ttl, r - .rdataToWireCanonical()); - } - byte[] wire_fmt = r.toWireCanonical(); - canonical_rrs.add(wire_fmt); + // private static final int DSA_SIGNATURE_LENGTH = 20; + private static final int ASN1_INT = 0x02; + private static final int ASN1_SEQ = 0x30; + + public static final int RR_NORMAL = 0; + public static final int RR_DELEGATION = 1; + public static final int RR_GLUE = 2; + public static final int RR_INVALID = 3; + + /** + * Generate from some basic information a prototype SIG RR containing + * everything but the actual signature itself. + * + * @param rrset + * the RRset being signed. + * @param signer + * the name of the signing key + * @param alg + * the algorithm of the signing key + * @param keyid + * the keyid (or footprint) of the signing key + * @param start + * the SIG inception time. + * @param expire + * the SIG expiration time. + * @param sig_ttl + * the TTL of the resulting SIG record. + * @return a prototype signature based on the RRset and key information. + */ + public static RRSIGRecord generatePreRRSIG(RRset rrset, Name signer, + int alg, int keyid, Date start, + Date expire, long sig_ttl) { + return new RRSIGRecord(rrset.getName(), rrset.getDClass(), sig_ttl, + rrset.getType(), alg, rrset.getTTL(), expire, start, keyid, + signer, null); } - // put the records into the correct ordering. - // Caculate the offset where the RDATA begins (we have to skip - // past the length byte) - - int offset = rrset.getName().toWireCanonical().length + 10; - ByteArrayComparator bac = new ByteArrayComparator(offset, false); - - Collections.sort(canonical_rrs, bac); - - for (Iterator i = canonical_rrs.iterator(); i.hasNext();) - { - byte[] wire_fmt_rec = (byte[]) i.next(); - image.writeByteArray(wire_fmt_rec); + /** + * Generate from some basic information a prototype SIG RR containing + * everything but the actual signature itself. + * + * @param rrset + * the RRset being signed. + * @param key + * the public KEY RR counterpart to the key being used to sign + * the RRset + * @param start + * the SIG inception time. + * @param expire + * the SIG expiration time. + * @param sig_ttl + * the TTL of the resulting SIG record. + * @return a prototype signature based on the RRset and key information. + */ + public static RRSIGRecord generatePreRRSIG(RRset rrset, DNSKEYRecord key, + Date start, Date expire, + long sig_ttl) { + return generatePreRRSIG(rrset, key.getName(), key.getAlgorithm(), + key.getFootprint(), start, expire, sig_ttl); } - return image.toByteArray(); - } - - /** - * Given an RRset and the prototype signature, generate the canonical data - * that is to be signed. - * - * @param rrset the RRset to be signed. - * @param presig a prototype SIG RR created using the same RRset. - * @return a block of data ready to be signed. - */ - public static byte[] generateSigData(RRset rrset, RRSIGRecord presig) - throws IOException - { - byte[] rrset_data = generateCanonicalRRsetData(rrset, presig.getOrigTTL(), presig.getLabels()); - - return generateSigData(rrset_data, presig); - } - - /** - * Given an RRset and the prototype signature, generate the canonical data - * that is to be signed. - * - * @param rrset_data the RRset converted into canonical wire line format (as - * per the canonicalization rules in RFC 2535). - * @param presig the prototype signature based on the same RRset represented - * in rrset_data. - * @return a block of data ready to be signed. - */ - public static byte[] generateSigData(byte[] rrset_data, RRSIGRecord presig) - throws IOException - { - byte[] sig_rdata = generatePreSigRdata(presig); - - ByteArrayOutputStream image = new ByteArrayOutputStream(sig_rdata.length - + rrset_data.length); - - image.write(sig_rdata); - image.write(rrset_data); - - return image.toByteArray(); - } - - /** - * Given the acutal signature an the prototype signature, combine them and - * return the fully formed SIGRecord. - * - * @param signature the cryptographic signature, in DNSSEC format. - * @param presig the prototype SIG RR to add the signature to. - * @return the fully formed SIG RR. - */ - public static RRSIGRecord generateRRSIG(byte[] signature, RRSIGRecord presig) - { - return new RRSIGRecord(presig.getName(), presig.getDClass(), presig - .getTTL(), presig.getTypeCovered(), presig.getAlgorithm(), presig - .getOrigTTL(), presig.getExpire(), presig.getTimeSigned(), presig - .getFootprint(), presig.getSigner(), signature); - } - - /** - * Converts from a RFC 2536 formatted DSA signature to a JCE (ASN.1) - * formatted signature. - * - *

- * ASN.1 format = ASN1_SEQ . seq_length . ASN1_INT . Rlength . R . ANS1_INT . - * Slength . S - *

- * - * The integers R and S may have a leading null byte to force the integer - * positive. - * - * @param signature the RFC 2536 formatted DSA signature. - * @return The ASN.1 formatted DSA signature. - * @throws SignatureException if there was something wrong with the RFC 2536 - * formatted signature. - */ - public static byte[] convertDSASignature(byte[] signature) - throws SignatureException - { - if (signature.length != 41) - throw new SignatureException("RFC 2536 signature not expected length."); - - byte r_pad = 0; - byte s_pad = 0; - - // handle initial null byte padding. - if (signature[1] < 0) r_pad++; - if (signature[21] < 0) s_pad++; - - // ASN.1 length = R length + S length + (2 + 2 + 2), where each 2 - // is for a ASN.1 type-length byte pair of which there are three - // (SEQ, INT, INT). - byte sig_length = (byte) (40 + r_pad + s_pad + 6); - - byte sig[] = new byte[sig_length]; - byte pos = 0; - - sig[pos++] = ASN1_SEQ; - sig[pos++] = (byte) (sig_length - 2); // all but the SEQ type+length. - sig[pos++] = ASN1_INT; - sig[pos++] = (byte) (20 + r_pad); - - // copy the value of R, leaving a null byte if necessary - if (r_pad == 1) sig[pos++] = 0; - - System.arraycopy(signature, 1, sig, pos, 20); - pos += 20; - - sig[pos++] = ASN1_INT; - sig[pos++] = (byte) (20 + s_pad); - - // copy the value of S, leaving a null byte if necessary - if (s_pad == 1) sig[pos++] = 0; - - System.arraycopy(signature, 21, sig, pos, 20); - - return sig; - } - - /** - * Converts from a JCE (ASN.1) formatted DSA signature to a RFC 2536 - * compliant signature. - * - *

- * rfc2536 format = T . R . S - *

- * - * where T is a number between 0 and 8, which is based on the DSA key - * length, and R & S are formatted to be exactly 20 bytes each (no leading - * null bytes). - * - * @param params the DSA parameters associated with the DSA key used to - * generate the signature. - * @param signature the ASN.1 formatted DSA signature. - * @return a RFC 2536 formatted DSA signature. - * @throws SignatureException if something is wrong with the ASN.1 format. - */ - public static byte[] convertDSASignature(DSAParams params, byte[] signature) - throws SignatureException - { - if (signature[0] != ASN1_SEQ || signature[2] != ASN1_INT) - { - throw new SignatureException( - "Invalid ASN.1 signature format: expected SEQ, INT"); + /** + * Generate from some basic information a prototype SIG RR containing + * everything but the actual signature itself. + * + * @param rec + * the DNS record being signed (forming an entire RRset). + * @param key + * the public KEY RR counterpart to the key signing the record. + * @param start + * the SIG inception time. + * @param expire + * the SIG expiration time. + * @param sig_ttl + * the TTL of the result SIG record. + * @return a prototype signature based on the Record and key information. + */ + public static RRSIGRecord generatePreRRSIG(Record rec, DNSKEYRecord key, + Date start, Date expire, + long sig_ttl) { + return new RRSIGRecord(rec.getName(), rec.getDClass(), sig_ttl, + rec.getType(), key.getAlgorithm(), rec.getTTL(), expire, start, + key.getFootprint(), key.getName(), null); } - byte r_pad = (byte) (signature[3] - 20); + /** + * Generate the binary image of the prototype SIG RR. + * + * @param presig + * the SIG RR prototype. + * @return the RDATA portion of the prototype SIG record. This forms the + * first part of the data to be signed. + */ + private static byte[] generatePreSigRdata(RRSIGRecord presig) { + // Generate the binary image; + DNSOutput image = new DNSOutput(); - if (signature[24 + r_pad] != ASN1_INT) - { - throw new SignatureException( - "Invalid ASN.1 signature format: expected SEQ, INT, INT"); + // precalculate some things + int start_time = (int) (presig.getTimeSigned().getTime() / 1000); + int expire_time = (int) (presig.getExpire().getTime() / 1000); + Name signer = presig.getSigner(); + + // first write out the partial SIG record (this is the SIG RDATA + // minus the actual signature. + image.writeU16(presig.getTypeCovered()); + image.writeU8(presig.getAlgorithm()); + image.writeU8(presig.getLabels()); + image.writeU32((int) presig.getOrigTTL()); + image.writeU32(expire_time); + image.writeU32(start_time); + image.writeU16(presig.getFootprint()); + image.writeByteArray(signer.toWireCanonical()); + + return image.toByteArray(); } -// log.trace("(start) ASN.1 DSA Sig:\n" + base64.toString(signature)); + /** + * Calculate the canonical wire line format of the RRset. + * + * @param rrset + * the RRset to convert. + * @param ttl + * the TTL to use when canonicalizing -- this is generally the + * TTL of the signature if there is a pre-existing signature. If + * not it is just the ttl of the rrset itself. + * @param labels + * the labels field of the signature, or 0. + * @return the canonical wire line format of the rrset. This is the second + * part of data to be signed. + */ + @SuppressWarnings("unchecked") + public static byte[] generateCanonicalRRsetData(RRset rrset, long ttl, + int labels) { + DNSOutput image = new DNSOutput(); - byte s_pad = (byte) (signature[25 + r_pad] - 20); + if (ttl == 0) ttl = rrset.getTTL(); + Name n = rrset.getName(); + if (labels == 0) { + labels = n.labels(); + } else { + // correct for Name()'s conception of label count. + labels++; + } + boolean wildcardName = false; + if (n.labels() != labels) { + n = n.wild(n.labels() - labels); + wildcardName = true; + // log.trace("Detected wildcard expansion: " + rrset.getName() + + // " changed to " + n); + } - byte[] sig = new byte[41]; // all rfc2536 signatures are 41 bytes. + // now convert the wire format records in the RRset into a + // list of byte arrays. + ArrayList canonical_rrs = new ArrayList(); + for (Iterator i = rrset.rrs(); i.hasNext();) { + Record r = (Record) i.next(); + if (r.getTTL() != ttl || wildcardName) { + // If necessary, we need to create a new record with a new ttl + // or ownername. + // In the TTL case, this avoids changing the ttl in the + // response. + r = Record.newRecord(n, r.getType(), r.getDClass(), ttl, + r.rdataToWireCanonical()); + } + byte[] wire_fmt = r.toWireCanonical(); + canonical_rrs.add(wire_fmt); + } - // Calculate T: - sig[0] = (byte) ((params.getP().bitLength() - 512) / 64); + // put the records into the correct ordering. + // Calculate the offset where the RDATA begins (we have to skip + // past the length byte) - // copy R value - if (r_pad >= 0) - { - System.arraycopy(signature, 4 + r_pad, sig, 1, 20); - } - else - { - // R is shorter than 20 bytes, so right justify the number - // (r_pad is negative here, remember?). - Arrays.fill(sig, 1, 1 - r_pad, (byte) 0); - System.arraycopy(signature, 4, sig, 1 - r_pad, 20 + r_pad); + int offset = rrset.getName().toWireCanonical().length + 10; + ByteArrayComparator bac = new ByteArrayComparator(offset, false); + + Collections.sort(canonical_rrs, bac); + + for (Iterator i = canonical_rrs.iterator(); i.hasNext();) { + byte[] wire_fmt_rec = i.next(); + image.writeByteArray(wire_fmt_rec); + } + + return image.toByteArray(); } - // copy S value - if (s_pad >= 0) - { - System.arraycopy(signature, 26 + r_pad + s_pad, sig, 21, 20); - } - else - { - // S is shorter than 20 bytes, so right justify the number - // (s_pad is negative here). - Arrays.fill(sig, 21, 21 - s_pad, (byte) 0); - System.arraycopy(signature, 26 + r_pad, sig, 21 - s_pad, 20 + s_pad); + /** + * Given an RRset and the prototype signature, generate the canonical data + * that is to be signed. + * + * @param rrset + * the RRset to be signed. + * @param presig + * a prototype SIG RR created using the same RRset. + * @return a block of data ready to be signed. + */ + public static byte[] generateSigData(RRset rrset, RRSIGRecord presig) + throws IOException { + byte[] rrset_data = generateCanonicalRRsetData(rrset, + presig.getOrigTTL(), + presig.getLabels()); + + return generateSigData(rrset_data, presig); } -// if (r_pad < 0 || s_pad < 0) -// { -// log.trace("(finish ***) RFC 2536 DSA Sig:\n" + base64.toString(sig)); -// -// } -// else -// { -// log.trace("(finish) RFC 2536 DSA Sig:\n" + base64.toString(sig)); -// } + /** + * Given an RRset and the prototype signature, generate the canonical data + * that is to be signed. + * + * @param rrset_data + * the RRset converted into canonical wire line format (as per + * the canonicalization rules in RFC 2535). + * @param presig + * the prototype signature based on the same RRset represented in + * rrset_data. + * @return a block of data ready to be signed. + */ + public static byte[] generateSigData(byte[] rrset_data, RRSIGRecord presig) + throws IOException { + byte[] sig_rdata = generatePreSigRdata(presig); - return sig; - } + ByteArrayOutputStream image = new ByteArrayOutputStream( + sig_rdata.length + rrset_data.length); + + image.write(sig_rdata); + image.write(rrset_data); + + return image.toByteArray(); + } + + /** + * Given the actual signature and the prototype signature, combine them and + * return the fully formed RRSIGRecord. + * + * @param signature + * the cryptographic signature, in DNSSEC format. + * @param presig + * the prototype RRSIG RR to add the signature to. + * @return the fully formed RRSIG RR. + */ + public static RRSIGRecord generateRRSIG(byte[] signature, RRSIGRecord presig) { + return new RRSIGRecord(presig.getName(), presig.getDClass(), + presig.getTTL(), presig.getTypeCovered(), + presig.getAlgorithm(), presig.getOrigTTL(), presig.getExpire(), + presig.getTimeSigned(), presig.getFootprint(), + presig.getSigner(), signature); + } + + /** + * Converts from a RFC 2536 formatted DSA signature to a JCE (ASN.1) + * formatted signature. + * + *

+ * ASN.1 format = ASN1_SEQ . seq_length . ASN1_INT . Rlength . R . ANS1_INT + * . Slength . S + *

+ * + * The integers R and S may have a leading null byte to force the integer + * positive. + * + * @param signature + * the RFC 2536 formatted DSA signature. + * @return The ASN.1 formatted DSA signature. + * @throws SignatureException + * if there was something wrong with the RFC 2536 formatted + * signature. + */ + public static byte[] convertDSASignature(byte[] signature) + throws SignatureException { + if (signature.length != 41) + throw new SignatureException( + "RFC 2536 signature not expected length."); + + byte r_pad = 0; + byte s_pad = 0; + + // handle initial null byte padding. + if (signature[1] < 0) r_pad++; + if (signature[21] < 0) s_pad++; + + // ASN.1 length = R length + S length + (2 + 2 + 2), where each 2 + // is for a ASN.1 type-length byte pair of which there are three + // (SEQ, INT, INT). + byte sig_length = (byte) (40 + r_pad + s_pad + 6); + + byte sig[] = new byte[sig_length]; + byte pos = 0; + + sig[pos++] = ASN1_SEQ; + sig[pos++] = (byte) (sig_length - 2); // all but the SEQ type+length. + sig[pos++] = ASN1_INT; + sig[pos++] = (byte) (20 + r_pad); + + // copy the value of R, leaving a null byte if necessary + if (r_pad == 1) sig[pos++] = 0; + + System.arraycopy(signature, 1, sig, pos, 20); + pos += 20; + + sig[pos++] = ASN1_INT; + sig[pos++] = (byte) (20 + s_pad); + + // copy the value of S, leaving a null byte if necessary + if (s_pad == 1) sig[pos++] = 0; + + System.arraycopy(signature, 21, sig, pos, 20); + + return sig; + } + + /** + * Converts from a JCE (ASN.1) formatted DSA signature to a RFC 2536 + * compliant signature. + * + *

+ * rfc2536 format = T . R . S + *

+ * + * where T is a number between 0 and 8, which is based on the DSA key + * length, and R & S are formatted to be exactly 20 bytes each (no leading + * null bytes). + * + * @param params + * the DSA parameters associated with the DSA key used to + * generate the signature. + * @param signature + * the ASN.1 formatted DSA signature. + * @return a RFC 2536 formatted DSA signature. + * @throws SignatureException + * if something is wrong with the ASN.1 format. + */ + public static byte[] convertDSASignature(DSAParams params, byte[] signature) + throws SignatureException { + if (signature[0] != ASN1_SEQ || signature[2] != ASN1_INT) { + throw new SignatureException( + "Invalid ASN.1 signature format: expected SEQ, INT"); + } + + byte r_pad = (byte) (signature[3] - 20); + + if (signature[24 + r_pad] != ASN1_INT) { + throw new SignatureException( + "Invalid ASN.1 signature format: expected SEQ, INT, INT"); + } + + // log.trace("(start) ASN.1 DSA Sig:\n" + base64.toString(signature)); + + byte s_pad = (byte) (signature[25 + r_pad] - 20); + + byte[] sig = new byte[41]; // all rfc2536 signatures are 41 bytes. + + // Calculate T: + sig[0] = (byte) ((params.getP().bitLength() - 512) / 64); + + // copy R value + if (r_pad >= 0) { + System.arraycopy(signature, 4 + r_pad, sig, 1, 20); + } else { + // R is shorter than 20 bytes, so right justify the number + // (r_pad is negative here, remember?). + Arrays.fill(sig, 1, 1 - r_pad, (byte) 0); + System.arraycopy(signature, 4, sig, 1 - r_pad, 20 + r_pad); + } + + // copy S value + if (s_pad >= 0) { + System.arraycopy(signature, 26 + r_pad + s_pad, sig, 21, 20); + } else { + // S is shorter than 20 bytes, so right justify the number + // (s_pad is negative here). + Arrays.fill(sig, 21, 21 - s_pad, (byte) 0); + System.arraycopy(signature, 26 + r_pad, sig, 21 - s_pad, 20 + s_pad); + } + + // if (r_pad < 0 || s_pad < 0) + // { + // log.trace("(finish ***) RFC 2536 DSA Sig:\n" + base64.toString(sig)); + // + // } + // else + // { + // log.trace("(finish) RFC 2536 DSA Sig:\n" + base64.toString(sig)); + // } + + return sig; + } } diff --git a/src/com/versign/tat/dnssec/TrustAnchorStore.java b/src/com/versign/tat/dnssec/TrustAnchorStore.java index 0e95343..99922f4 100644 --- a/src/com/versign/tat/dnssec/TrustAnchorStore.java +++ b/src/com/versign/tat/dnssec/TrustAnchorStore.java @@ -33,16 +33,12 @@ import java.util.Map; import org.xbill.DNS.Name; -import com.versign.tat.dnssec.SRRset; -import com.versign.tat.dnssec.SecurityStatus; - - /** * */ public class TrustAnchorStore { - private Map mMap; + private Map mMap; public TrustAnchorStore() { @@ -59,7 +55,7 @@ public class TrustAnchorStore { if (mMap == null) { - mMap = new HashMap(); + mMap = new HashMap(); } String k = key(rrset.getName(), rrset.getDClass()); rrset.setSecurityStatus(SecurityStatus.SECURE); @@ -70,7 +66,7 @@ public class TrustAnchorStore private SRRset lookup(String key) { if (mMap == null) return null; - return (SRRset) mMap.get(key); + return mMap.get(key); } public SRRset find(Name n, int dclass) diff --git a/src/com/versign/tat/dnssec/Util.java b/src/com/versign/tat/dnssec/Util.java index 3466170..967be77 100644 --- a/src/com/versign/tat/dnssec/Util.java +++ b/src/com/versign/tat/dnssec/Util.java @@ -31,15 +31,10 @@ package com.versign.tat.dnssec; import java.util.*; -import org.xbill.DNS.Flags; -import org.xbill.DNS.Header; import org.xbill.DNS.Name; /** * Some basic utility functions. - * - * @author davidb - * @version $Revision$ */ public class Util { @@ -61,31 +56,6 @@ public class Util return n; } -// public static SMessage errorMessage(Request request, int rcode) -// { -// SMessage m = new SMessage(request.getID()); -// Header h = m.getHeader(); -// h.setRcode(rcode); -// h.setFlag(Flags.QR); -// m.setQuestion(request.getQuestion()); -// m.setOPT(request.getOPT()); -// -// return m; -// } -// -// public static SMessage errorMessage(SMessage message, int rcode) -// { -// Header h = message.getHeader(); -// SMessage m = new SMessage(h.getID()); -// h = m.getHeader(); -// h.setRcode(rcode); -// h.setFlag(Flags.QR); -// m.setQuestion(message.getQuestion()); -// m.setOPT(message.getOPT()); -// -// return m; -// } - public static int parseInt(String s, int def) { if (s == null) return def; @@ -123,25 +93,21 @@ public class Util } } - public static List parseConfigPrefix(Properties config, String prefix) + public static List parseConfigPrefix(Properties config, String prefix) { if (! prefix.endsWith(".")) { prefix = prefix + "."; } - List res = new ArrayList(); + List res = new ArrayList(); - for (Iterator i = config.entrySet().iterator(); i.hasNext(); ) - { - Map.Entry entry = (Map.Entry) i.next(); - String key = (String) entry.getKey(); - if (key.startsWith(prefix)) - { - key = key.substring(prefix.length()); - - res.add(new ConfigEntry(key, (String) entry.getValue())); - } + for (Map.Entry entry : config.entrySet()) { + String key = (String) entry.getKey(); + if (key.startsWith(prefix)) { + key = key.substring(prefix.length()); + res.add(new ConfigEntry(key, (String) entry.getValue())); + } } return res; diff --git a/src/com/versign/tat/dnssec/ValUtils.java b/src/com/versign/tat/dnssec/ValUtils.java index ef12d34..037feb2 100644 --- a/src/com/versign/tat/dnssec/ValUtils.java +++ b/src/com/versign/tat/dnssec/ValUtils.java @@ -45,26 +45,40 @@ public class ValUtils { // validation strategy. They have no bearing on the iterative resolution // algorithm, so they are confined here. - /** Not subtyped yet. */ - public static final int UNTYPED = 0; - - /** Not a recognized subtype. */ - public static final int UNKNOWN = 1; - - /** A postive, direct, response. */ - public static final int POSITIVE = 2; - - /** A postive response, with a CNAME/DNAME chain. */ - public static final int CNAME = 3; - - /** A NOERROR/NODATA response. */ - public static final int NODATA = 4; - - /** A NXDOMAIN response. */ - public static final int NAMEERROR = 5; - - /** A response to a qtype=ANY query. */ - public static final int ANY = 6; + public enum ResponseType { + UNTYPED, // not sub typed yet + UNKNOWN, // not a recognized sub type + POSITIVE, // a positive response (no CNAME/DNAME chain) + CNAME, // a positive response with a CNAME/DNAME chain. + NODATA, // a NOERROR/NODATA response + NAMEERROR, // a NXDOMAIN response + ANY, // a response to a qtype=ANY query + REFERRAL, + // a referral response + THROWAWAY + // a throwaway response (i.e., an error) + } + +// /** Not subtyped yet. */ +// public static final int UNTYPED = 0; +// +// /** Not a recognized subtype. */ +// public static final int UNKNOWN = 1; +// +// /** A postive, direct, response. */ +// public static final int POSITIVE = 2; +// +// /** A postive response, with a CNAME/DNAME chain. */ +// public static final int CNAME = 3; +// +// /** A NOERROR/NODATA response. */ +// public static final int NODATA = 4; +// +// /** A NXDOMAIN response. */ +// public static final int NAMEERROR = 5; +// +// /** A response to a qtype=ANY query. */ +// public static final int ANY = 6; /** A local copy of the verifier object. */ private DnsSecVerifier mVerifier; @@ -81,18 +95,38 @@ public class ValUtils { * * @return A subtype ranging from UNKNOWN to NAMEERROR. */ - public static int classifyResponse(SMessage m) { + public static ResponseType classifyResponse(SMessage m, Name zone) { + + SRRset[] rrsets; // Normal Name Error's are easy to detect -- but don't mistake a CNAME // chain ending in NXDOMAIN. if (m.getRcode() == Rcode.NXDOMAIN && m.getCount(Section.ANSWER) == 0) { - return NAMEERROR; + return ResponseType.NAMEERROR; + } + + // If rcode isn't NXDOMAIN or NOERROR, it is a throwaway response. + if (m.getRcode() != Rcode.NOERROR) { + return ResponseType.THROWAWAY; + } + + // Next is REFERRAL. These are distinguished by having: + // 1) nothing in the ANSWER section + // 2) an NS RRset in the AUTHORITY section that is a strict subdomain of + // 'zone' (the presumed queried zone). + if (zone != null && m.getCount(Section.ANSWER) == 0 + && m.getCount(Section.AUTHORITY) > 0) { + rrsets = m.getSectionRRsets(Section.AUTHORITY); + for (int i = 0; i < rrsets.length; ++i) { + if (rrsets[i].getType() == Type.NS + && strictSubdomain(rrsets[i].getName(), zone)) { + return ResponseType.REFERRAL; + } + } } // Next is NODATA - // st_log.debug("classifyResponse: ancount = " + - // m.getCount(Section.ANSWER)); if (m.getCount(Section.ANSWER) == 0) { - return NODATA; + return ResponseType.NODATA; } // We distinguish between CNAME response and other positive/negative @@ -100,23 +134,22 @@ public class ValUtils { int qtype = m.getQuestion().getType(); // We distinguish between ANY and CNAME or POSITIVE because ANY - // responses - // are validated differently. + // responses are validated differently. if (qtype == Type.ANY) { - return ANY; + return ResponseType.ANY; } - SRRset[] rrsets = m.getSectionRRsets(Section.ANSWER); + rrsets = m.getSectionRRsets(Section.ANSWER); // Note that DNAMEs will be ignored here, unless qtype=DNAME. Unless // qtype=CNAME, this will yield a CNAME response. for (int i = 0; i < rrsets.length; i++) { - if (rrsets[i].getType() == qtype) return POSITIVE; - if (rrsets[i].getType() == Type.CNAME) return CNAME; + if (rrsets[i].getType() == qtype) return ResponseType.POSITIVE; + if (rrsets[i].getType() == Type.CNAME) return ResponseType.CNAME; } // st_log.warn("Failed to classify response message:\n" + m); - return UNKNOWN; + return ResponseType.UNKNOWN; } /** @@ -126,162 +159,25 @@ public class ValUtils { * * @param m * The response to analyze. - * @param request - * The request that generated the response. * @return a signer name, if the response is signed (even partially), or * null if the response isn't signed. */ public Name findSigner(SMessage m) { - int subtype = classifyResponse(m); - Name qname = m.getQName(); + // FIXME: this used to classify the message, then look in the pertinent + // section. Now we just find the first RRSIG in the ANSWER and AUTHORIY + // sections. - SRRset[] rrsets; - - switch (subtype) { - case POSITIVE: - case CNAME: - case ANY: - // Check to see if the ANSWER section RRset - rrsets = m.getSectionRRsets(Section.ANSWER); - for (int i = 0; i < rrsets.length; i++) { - if (rrsets[i].getName().equals(qname)) { - return rrsets[i].getSignerName(); - } - } - return null; - - case NAMEERROR: - case NODATA: - // Check to see if the AUTH section NSEC record(s) have rrsigs - rrsets = m.getSectionRRsets(Section.AUTHORITY); - for (int i = 0; i < rrsets.length; i++) { - if (rrsets[i].getType() == Type.NSEC - || rrsets[i].getType() == Type.NSEC3) { - return rrsets[i].getSignerName(); - } - } - return null; - default: - // log.debug("findSigner: could not find signer name " - // + "for unknown type response."); - return null; - } - } - - public boolean dssetIsUsable(SRRset ds_rrset) { - for (Iterator i = ds_rrset.rrs(); i.hasNext();) { - DSRecord ds = (DSRecord) i.next(); - if (supportsDigestID(ds.getDigestID()) - && mVerifier.supportsAlgorithm(ds.getAlgorithm())) { - return true; + for (int section = Section.ANSWER; section < Section.ADDITIONAL; ++section) { + SRRset[] rrsets = m.getSectionRRsets(section); + for (int i = 0; i < rrsets.length; ++i) { + Name signerName = rrsets[i].getSignerName(); + if (signerName != null) return signerName; } } - - return false; + return null; } - /** - * Given a DS rrset and a DNSKEY rrset, match the DS to a DNSKEY and verify - * the DNSKEY rrset with that key. - * - * @param dnskey_rrset - * The DNSKEY rrset to match against. The security status of this - * rrset will be updated on a successful verification. - * @param ds_rrset - * The DS rrset to match with. This rrset must already be - * trusted. - * - * @return a KeyEntry. This will either contain the now trusted - * dnskey_rrset, a "null" key entry indicating that this DS - * rrset/DNSKEY pair indicate an secure end to the island of trust - * (i.e., unknown algorithms), or a "bad" KeyEntry if the dnskey - * rrset fails to verify. Note that the "null" response should - * generally only occur in a private algorithm scenario: normally - * this sort of thing is checked before fetching the matching DNSKEY - * rrset. - */ - // public KeyEntry verifyNewDNSKEYs(SRRset dnskey_rrset, SRRset ds_rrset) - // { - // if (!dnskey_rrset.getName().equals(ds_rrset.getName())) - // { - // // log.debug("DNSKEY RRset did not match DS RRset by name!"); - // return KeyEntry - // .newBadKeyEntry(ds_rrset.getName(), ds_rrset.getDClass()); - // } - // - // // as long as this is false, we can consider this DS rrset to be - // // equivalent to no DS rrset. - // boolean hasUsefulDS = false; - // - // for (Iterator i = ds_rrset.rrs(); i.hasNext();) - // { - // DSRecord ds = (DSRecord) i.next(); - // - // // Check to see if we can understand this DS. - // if (!supportsDigestID(ds.getDigestID()) - // || !mVerifier.supportsAlgorithm(ds.getAlgorithm())) - // { - // continue; - // } - // - // // Once we see a single DS with a known digestID and algorithm, we - // // cannot return INSECURE (with a "null" KeyEntry). - // hasUsefulDS = true; - // - // DNSKEY : for (Iterator j = dnskey_rrset.rrs(); j.hasNext();) - // { - // DNSKEYRecord dnskey = (DNSKEYRecord) j.next(); - // - // // Skip DNSKEYs that don't match the basic criteria. - // if (ds.getFootprint() != dnskey.getFootprint() - // || ds.getAlgorithm() != dnskey.getAlgorithm()) - // { - // continue; - // } - // - // // Convert the candidate DNSKEY into a hash using the same DS hash - // // algorithm. - // byte[] key_hash = calculateDSHash(dnskey, ds.getDigestID()); - // byte[] ds_hash = ds.getDigest(); - // - // // see if there is a length mismatch (unlikely) - // if (key_hash.length != ds_hash.length) - // { - // continue DNSKEY; - // } - // - // for (int k = 0; k < key_hash.length; k++) - // { - // if (key_hash[k] != ds_hash[k]) continue DNSKEY; - // } - // - // // Otherwise, we have a match! Make sure that the DNSKEY verifies - // // *with this key*. - // byte res = mVerifier.verify(dnskey_rrset, dnskey); - // if (res == SecurityStatus.SECURE) - // { - // // log.trace("DS matched DNSKEY."); - // dnskey_rrset.setSecurityStatus(SecurityStatus.SECURE); - // return KeyEntry.newKeyEntry(dnskey_rrset); - // } - // // If it didn't validate with the DNSKEY, try the next one! - // } - // } - // - // // None of the DS's worked out. - // - // // If no DSs were understandable, then this is OK. - // if (!hasUsefulDS) - // { - // // - // log.debug("No usuable DS records were found -- treating as insecure."); - // return KeyEntry.newNullKeyEntry(ds_rrset.getName(), ds_rrset - // .getDClass(), ds_rrset.getTTL()); - // } - // // If any were understandable, then it is bad. - // // log.debug("Failed to match any usable DS to a DNSKEY."); - // return KeyEntry.newBadKeyEntry(ds_rrset.getName(), ds_rrset.getDClass()); - // } + /** * Given a DNSKEY record, generate the DS record from it. * @@ -406,9 +302,9 @@ public class ValUtils { * @return The status (BOGUS or SECURE). */ public byte verifySRRset(SRRset rrset, SRRset key_rrset) { - String rrset_name = rrset.getName() + "/" - + Type.string(rrset.getType()) + "/" - + DClass.string(rrset.getDClass()); +// String rrset_name = rrset.getName() + "/" +// + Type.string(rrset.getType()) + "/" +// + DClass.string(rrset.getDClass()); if (rrset.getSecurityStatus() == SecurityStatus.SECURE) { // log.trace("verifySRRset: rrset <" + rrset_name @@ -433,7 +329,7 @@ public class ValUtils { } /** - * Determine if a given type map has a given typ. + * Determine if a given type map has a given type. * * @param types * The type map from the NSEC record. @@ -448,6 +344,7 @@ public class ValUtils { return false; } + @SuppressWarnings("unchecked") public static RRSIGRecord rrsetFirstSig(RRset rrset) { for (Iterator i = rrset.sigs(); i.hasNext();) { return (RRSIGRecord) i.next(); @@ -517,7 +414,7 @@ public class ValUtils { * generating wildcard. * * @param rrset - * The rrset to chedck. + * The rrset to check. * @return the wildcard name, if the rrset was synthesized from a wildcard. * null if not. */ @@ -577,14 +474,11 @@ public class ValUtils { // If NSEC is a parent of qname, we need to check the type map // If the parent name has a DNAME or is a delegation point, then this - // NSEC - // is being misused. - if (qname.subdomain(owner) - && (typeMapHasType(nsec.getTypes(), Type.DNAME) || (typeMapHasType( - nsec.getTypes(), - Type.NS) && !typeMapHasType( - nsec.getTypes(), - Type.SOA)))) { + // NSEC is being misused. + boolean hasBadType = typeMapHasType(nsec.getTypes(), Type.DNAME) + || (typeMapHasType(nsec.getTypes(), Type.NS) && !typeMapHasType(nsec.getTypes(), + Type.SOA)); + if (qname.subdomain(owner) && hasBadType) { return false; }