757 lines
29 KiB
Java
757 lines
29 KiB
Java
/*
|
|
* $Id$
|
|
*
|
|
* Copyright (c) 2006 VeriSign. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer. 2. Redistributions in
|
|
* binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other
|
|
* materials provided with the distribution. 3. The name of the author may not
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
|
|
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
package com.versign.tat.dnssec;
|
|
|
|
import java.security.NoSuchAlgorithmException;
|
|
import java.util.*;
|
|
|
|
import org.xbill.DNS.*;
|
|
import org.xbill.DNS.utils.base32;
|
|
|
|
import com.versign.tat.dnssec.SignUtils.ByteArrayComparator;
|
|
|
|
public class NSEC3ValUtils {
|
|
|
|
// FIXME: should probably refactor to handle different NSEC3 parameters more
|
|
// efficiently.
|
|
// Given a list of NSEC3 RRs, they should be grouped according to
|
|
// parameters. The idea is to hash and compare for each group independently,
|
|
// instead of having to skip NSEC3 RRs with the wrong parameters.
|
|
|
|
private static Name asterisk_label = Name.fromConstantString("*");
|
|
|
|
/**
|
|
* This is a class to encapsulate a unique set of NSEC3 parameters:
|
|
* algorithm, iterations, and salt.
|
|
*/
|
|
private static class NSEC3Parameters {
|
|
public byte alg;
|
|
public byte[] salt;
|
|
public int iterations;
|
|
|
|
public NSEC3Parameters(NSEC3Record r) {
|
|
alg = r.getHashAlgorithm();
|
|
salt = r.getSalt();
|
|
iterations = r.getIterations();
|
|
}
|
|
|
|
public boolean match(NSEC3Record r, ByteArrayComparator bac) {
|
|
if (r.getHashAlgorithm() != alg) return false;
|
|
if (r.getIterations() != iterations) return false;
|
|
|
|
if (salt == null && r.getSalt() != null) return false;
|
|
|
|
if (bac == null) bac = new ByteArrayComparator();
|
|
return bac.compare(r.getSalt(), salt) == 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This is just a simple class to encapsulate the response to a closest
|
|
* encloser proof.
|
|
*/
|
|
private static class CEResponse {
|
|
public Name closestEncloser;
|
|
public NSEC3Record ce_nsec3;
|
|
public NSEC3Record nc_nsec3;
|
|
|
|
public CEResponse(Name ce, NSEC3Record nsec3) {
|
|
this.closestEncloser = ce;
|
|
this.ce_nsec3 = nsec3;
|
|
}
|
|
}
|
|
|
|
public static boolean supportsHashAlgorithm(int alg) {
|
|
if (alg == NSEC3Record.SHA1_DIGEST_ID) return true;
|
|
return false;
|
|
}
|
|
|
|
public static void stripUnknownAlgNSEC3s(List<NSEC3Record> nsec3s) {
|
|
if (nsec3s == null) return;
|
|
for (ListIterator<NSEC3Record> i = nsec3s.listIterator(); i.hasNext();) {
|
|
NSEC3Record nsec3 = i.next();
|
|
if (!supportsHashAlgorithm(nsec3.getHashAlgorithm())) {
|
|
i.remove();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given a list of NSEC3Records that are part of a message, determine the
|
|
* NSEC3 parameters (hash algorithm, iterations, and salt) present. If there
|
|
* is more than one distinct grouping, return null;
|
|
*
|
|
* @param nsec3s
|
|
* A list of NSEC3Record object.
|
|
* @return A set containing a number of objects (NSEC3Parameter objects)
|
|
* that correspond to each distinct set of parameters, or null if
|
|
* the nsec3s list was empty.
|
|
*/
|
|
public static NSEC3Parameters nsec3Parameters(List<NSEC3Record> nsec3s) {
|
|
if (nsec3s == null || nsec3s.size() == 0) return null;
|
|
|
|
NSEC3Parameters params = new NSEC3Parameters(
|
|
(NSEC3Record) nsec3s.get(0));
|
|
ByteArrayComparator bac = new ByteArrayComparator();
|
|
|
|
for (NSEC3Record nsec3 : nsec3s) {
|
|
if (!params.match(nsec3, bac)) return null;
|
|
}
|
|
|
|
return params;
|
|
}
|
|
|
|
|
|
/**
|
|
* Given a hash and an a zone name, construct an NSEC3 ownername.
|
|
*
|
|
* @param hash
|
|
* The hash of an original name.
|
|
* @param zonename
|
|
* The zone to use in constructing the NSEC3 name.
|
|
* @return The NSEC3 name.
|
|
*/
|
|
private static Name hashName(byte[] hash, Name zonename) {
|
|
try {
|
|
return new Name(base32.toString(hash).toLowerCase(), zonename);
|
|
} catch (TextParseException e) {
|
|
// Note, this should never happen.
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given a set of NSEC3 parameters, hash a name.
|
|
*
|
|
* @param name
|
|
* The name to hash.
|
|
* @param params
|
|
* The parameters to hash with.
|
|
* @return The hash.
|
|
*/
|
|
private static byte[] hash(Name name, NSEC3Parameters params) {
|
|
try {
|
|
return NSEC3Record.hash(name, params.alg, params.iterations,
|
|
params.salt);
|
|
} catch (NoSuchAlgorithmException e) {
|
|
// st_log.debug("Did not recognize hash algorithm: " + params.alg);
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given the name of a closest encloser, return the name *.closest_encloser.
|
|
*
|
|
* @param closestEncloser
|
|
* The name to start with.
|
|
* @return The wildcard name.
|
|
*/
|
|
private static Name ceWildcard(Name closestEncloser) {
|
|
try {
|
|
Name wc = Name.concatenate(asterisk_label, closestEncloser);
|
|
return wc;
|
|
} catch (NameTooLongException e) {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given a qname and its proven closest encloser, calculate the "next
|
|
* closest" name. Basically, this is the name that is one label longer than
|
|
* the closest encloser that is still a subdomain of qname.
|
|
*
|
|
* @param qname
|
|
* The qname.
|
|
* @param closestEncloser
|
|
* The closest encloser name.
|
|
* @return The next closer name.
|
|
*/
|
|
private static Name nextClosest(Name qname, Name closestEncloser) {
|
|
int strip = qname.labels() - closestEncloser.labels() - 1;
|
|
return (strip > 0) ? new Name(qname, strip) : qname;
|
|
}
|
|
|
|
/**
|
|
* Find the NSEC3Record that matches a hash of a name.
|
|
*
|
|
* @param hash
|
|
* The pre-calculated hash of a name.
|
|
* @param zonename
|
|
* The name of the zone that the NSEC3s are from.
|
|
* @param nsec3s
|
|
* A list of NSEC3Records from a given message.
|
|
* @param params
|
|
* The parameters used for calculating the hash.
|
|
* @param bac
|
|
* An already allocated ByteArrayComparator, for reuse. This may
|
|
* be null.
|
|
*
|
|
* @return The matching NSEC3Record, if one is present.
|
|
*/
|
|
private static NSEC3Record findMatchingNSEC3(byte[] hash, Name zonename,
|
|
List<NSEC3Record> nsec3s,
|
|
NSEC3Parameters params,
|
|
ByteArrayComparator bac) {
|
|
Name n = hashName(hash, zonename);
|
|
|
|
for (NSEC3Record nsec3 : nsec3s) {
|
|
// Skip nsec3 records that are using different parameters.
|
|
if (!params.match(nsec3, bac)) continue;
|
|
if (n.equals(nsec3.getName())) return nsec3;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Given a hash and a candidate NSEC3Record, determine if that NSEC3Record
|
|
* covers the hash. Covers specifically means that the hash is in between
|
|
* the owner and next hashes and does not equal either.
|
|
*
|
|
* @param nsec3
|
|
* The candidate NSEC3Record.
|
|
* @param hash
|
|
* The precalculated hash.
|
|
* @param bac
|
|
* An already allocated comparator. This may be null.
|
|
* @return True if the NSEC3Record covers the hash.
|
|
*/
|
|
private static boolean nsec3Covers(NSEC3Record nsec3, byte[] hash,
|
|
ByteArrayComparator bac) {
|
|
byte[] owner = nsec3.getOwner();
|
|
byte[] next = nsec3.getNext();
|
|
|
|
// This is the "normal case: owner < next and owner < hash < next
|
|
if (bac.compare(owner, hash) < 0 && bac.compare(hash, next) < 0)
|
|
return true;
|
|
|
|
// this is the end of zone case: next < owner && hash > owner || hash <
|
|
// next
|
|
if (bac.compare(next, owner) <= 0
|
|
&& (bac.compare(hash, next) < 0 || bac.compare(owner, hash) < 0))
|
|
return true;
|
|
|
|
// Otherwise, the NSEC3 does not cover the hash.
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Given a pre-hashed name, find a covering NSEC3 from among a list of
|
|
* NSEC3s.
|
|
*
|
|
* @param hash
|
|
* The hash to consider.
|
|
* @param zonename
|
|
* The name of the zone.
|
|
* @param nsec3s
|
|
* The list of NSEC3s present in a message.
|
|
* @param params
|
|
* The NSEC3 parameters used to generate the hash -- NSEC3s that
|
|
* do not use those parameters will be skipped.
|
|
*
|
|
* @return A covering NSEC3 if one is present, null otherwise.
|
|
*/
|
|
private static NSEC3Record findCoveringNSEC3(byte[] hash, Name zonename,
|
|
List<NSEC3Record> nsec3s,
|
|
NSEC3Parameters params,
|
|
ByteArrayComparator bac) {
|
|
ByteArrayComparator comparator = new ByteArrayComparator();
|
|
|
|
for (NSEC3Record nsec3 : nsec3s) {
|
|
if (!params.match(nsec3, bac)) continue;
|
|
if (nsec3Covers(nsec3, hash, comparator)) return nsec3;
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Given a name and a list of NSEC3s, find the candidate closest encloser.
|
|
* This will be the first ancestor of 'name' (including itself) to have a
|
|
* matching NSEC3 RR.
|
|
*
|
|
* @param name
|
|
* The name the start with.
|
|
* @param zonename
|
|
* The name of the zone that the NSEC3s came from.
|
|
* @param nsec3s
|
|
* The list of NSEC3s.
|
|
* @param nsec3params
|
|
* The NSEC3 parameters.
|
|
* @param bac
|
|
* A pre-allocated comparator. May be null.
|
|
*
|
|
* @return A CEResponse containing the closest encloser name and the NSEC3
|
|
* RR that matched it, or null if there wasn't one.
|
|
*/
|
|
private static CEResponse findClosestEncloser(Name name, Name zonename,
|
|
List<NSEC3Record> nsec3s,
|
|
NSEC3Parameters params,
|
|
ByteArrayComparator bac) {
|
|
Name n = name;
|
|
|
|
NSEC3Record nsec3;
|
|
|
|
// This scans from longest name to shortest, so the first match we find
|
|
// is
|
|
// the only viable candidate.
|
|
// FIXME: modify so that the NSEC3 matching the zone apex need not be
|
|
// present.
|
|
while (n.labels() >= zonename.labels()) {
|
|
nsec3 = findMatchingNSEC3(hash(n, params), zonename, nsec3s,
|
|
params, bac);
|
|
if (nsec3 != null) return new CEResponse(n, nsec3);
|
|
n = new Name(n, 1);
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Given a List of nsec3 RRs, find and prove the closest encloser to qname.
|
|
*
|
|
* @param qname
|
|
* The qname in question.
|
|
* @param zonename
|
|
* The name of the zone that the NSEC3 RRs come from.
|
|
* @param nsec3s
|
|
* The list of NSEC3s found the this response (already verified).
|
|
* @param params
|
|
* The NSEC3 parameters found in the response.
|
|
* @param bac
|
|
* A pre-allocated comparator. May be null.
|
|
* @param proveDoesNotExist
|
|
* If true, then if the closest encloser turns out to be qname,
|
|
* then null is returned.
|
|
* @return null if the proof isn't completed. Otherwise, return a CEResponse
|
|
* object which contains the closest encloser name and the NSEC3
|
|
* that matches it.
|
|
*/
|
|
private static CEResponse proveClosestEncloser(Name qname, Name zonename,
|
|
List<NSEC3Record> nsec3s,
|
|
NSEC3Parameters params,
|
|
ByteArrayComparator bac,
|
|
boolean proveDoesNotExist) {
|
|
CEResponse candidate = findClosestEncloser(qname, zonename, nsec3s,
|
|
params, bac);
|
|
|
|
if (candidate == null) {
|
|
// st_log.debug("proveClosestEncloser: could not find a "
|
|
// + "candidate for the closest encloser.");
|
|
return null;
|
|
}
|
|
|
|
if (candidate.closestEncloser.equals(qname)) {
|
|
if (proveDoesNotExist) {
|
|
// st_log.debug("proveClosestEncloser: proved that qname existed!");
|
|
return null;
|
|
}
|
|
// otherwise, we need to nothing else to prove that qname is its own
|
|
// closest encloser.
|
|
return candidate;
|
|
}
|
|
|
|
// If the closest encloser is actually a delegation, then the response
|
|
// should have been a referral. If it is a DNAME, then it should have
|
|
// been
|
|
// a DNAME response.
|
|
if (candidate.ce_nsec3.hasType(Type.NS)
|
|
&& !candidate.ce_nsec3.hasType(Type.SOA)) {
|
|
// st_log.debug("proveClosestEncloser: closest encloser "
|
|
// + "was a delegation!");
|
|
return null;
|
|
}
|
|
if (candidate.ce_nsec3.hasType(Type.DNAME)) {
|
|
// st_log.debug("proveClosestEncloser: closest encloser was a DNAME!");
|
|
return null;
|
|
}
|
|
|
|
// Otherwise, we need to show that the next closer name is covered.
|
|
Name nextClosest = nextClosest(qname, candidate.closestEncloser);
|
|
|
|
byte[] nc_hash = hash(nextClosest, params);
|
|
candidate.nc_nsec3 = findCoveringNSEC3(nc_hash, zonename, nsec3s,
|
|
params, bac);
|
|
if (candidate.nc_nsec3 == null) {
|
|
// st_log.debug("Could not find proof that the "
|
|
// + "closest encloser was the closest encloser");
|
|
return null;
|
|
}
|
|
|
|
return candidate;
|
|
}
|
|
|
|
private static int maxIterations(int baseAlg, int keysize) {
|
|
switch (baseAlg) {
|
|
case DnsSecVerifier.RSA:
|
|
if (keysize == 0) return 2500; // the max at 4096
|
|
if (keysize > 2048) return 2500;
|
|
if (keysize > 1024) return 500;
|
|
if (keysize > 0) return 150;
|
|
break;
|
|
case DnsSecVerifier.DSA:
|
|
if (keysize == 0) return 5000; // the max at 2048;
|
|
if (keysize > 1024) return 5000;
|
|
if (keysize > 0) return 1500;
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
private static boolean validIterations(NSEC3Parameters nsec3params,
|
|
RRset dnskey_rrset,
|
|
DnsSecVerifier verifier) {
|
|
// for now, we return the maximum iterations based simply on the key
|
|
// algorithms that may have been used to sign the NSEC3 RRsets.
|
|
|
|
int max_iterations = 0;
|
|
for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) {
|
|
DNSKEYRecord dnskey = (DNSKEYRecord) i.next();
|
|
int baseAlg = verifier.baseAlgorithm(dnskey.getAlgorithm());
|
|
int iters = maxIterations(baseAlg, 0);
|
|
max_iterations = max_iterations < iters ? iters : max_iterations;
|
|
}
|
|
|
|
if (nsec3params.iterations > max_iterations) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Determine if all of the NSEC3s in a response are legally ignoreable
|
|
* (i.e., their presence should lead to an INSECURE result). Currently, this
|
|
* is solely based on iterations.
|
|
*
|
|
* @param nsec3s
|
|
* The list of NSEC3s. If there is more than one set of NSEC3
|
|
* parameters present, this test will not be performed.
|
|
* @param dnskey_rrset
|
|
* The set of validating DNSKEYs.
|
|
* @param verifier
|
|
* The verifier used to verify the NSEC3 RRsets. This is solely
|
|
* used to map algorithm aliases.
|
|
* @return true if all of the NSEC3s can be legally ignored, false if not.
|
|
*/
|
|
public static boolean allNSEC3sIgnoreable(List<NSEC3Record> nsec3s,
|
|
RRset dnskey_rrset,
|
|
DnsSecVerifier verifier) {
|
|
NSEC3Parameters params = nsec3Parameters(nsec3s);
|
|
if (params == null) return false;
|
|
|
|
return !validIterations(params, dnskey_rrset, verifier);
|
|
}
|
|
|
|
/**
|
|
* Determine if the set of NSEC3 records provided with a response prove NAME
|
|
* ERROR. This means that the NSEC3s prove a) the closest encloser exists,
|
|
* b) the direct child of the closest encloser towards qname doesn't exist,
|
|
* and c) *.closest encloser does not exist.
|
|
*
|
|
* @param nsec3s
|
|
* The list of NSEC3s.
|
|
* @param qname
|
|
* The query name to check against.
|
|
* @param zonename
|
|
* This is the name of the zone that the NSEC3s belong to. This
|
|
* may be discovered in any number of ways. A good one is to use
|
|
* the signerName from the NSEC3 record's RRSIG.
|
|
* @return SecurityStatus.SECURE of the Name Error is proven by the NSEC3
|
|
* RRs, BOGUS if not, INSECURE if all of the NSEC3s could be validly
|
|
* ignored.
|
|
*/
|
|
public static boolean proveNameError(List<NSEC3Record> nsec3s, Name qname,
|
|
Name zonename) {
|
|
if (nsec3s == null || nsec3s.size() == 0) return false;
|
|
|
|
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
|
|
if (nsec3params == null) {
|
|
// st_log.debug("Could not find a single set of " +
|
|
// "NSEC3 parameters (multiple parameters present).");
|
|
return false;
|
|
}
|
|
|
|
ByteArrayComparator bac = new ByteArrayComparator();
|
|
|
|
// First locate and prove the closest encloser to qname. We will use the
|
|
// variant that fails if the closest encloser turns out to be qname.
|
|
CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s,
|
|
nsec3params, bac, true);
|
|
|
|
if (ce == null) {
|
|
// st_log.debug("proveNameError: failed to prove a closest encloser.");
|
|
return false;
|
|
}
|
|
|
|
// At this point, we know that qname does not exist. Now we need to
|
|
// prove
|
|
// that the wildcard does not exist.
|
|
Name wc = ceWildcard(ce.closestEncloser);
|
|
byte[] wc_hash = hash(wc, nsec3params);
|
|
NSEC3Record nsec3 = findCoveringNSEC3(wc_hash, zonename, nsec3s,
|
|
nsec3params, bac);
|
|
if (nsec3 == null) {
|
|
// st_log.debug("proveNameError: could not prove that the "
|
|
// + "applicable wildcard did not exist.");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Determine if the NSEC3s provided in a response prove the NOERROR/NODATA
|
|
* status. There are a number of different variants to this:
|
|
*
|
|
* 1) Normal NODATA -- qname is matched to an NSEC3 record, type is not
|
|
* present.
|
|
*
|
|
* 2) ENT NODATA -- because there must be NSEC3 record for
|
|
* empty-non-terminals, this is the same as #1.
|
|
*
|
|
* 3) NSEC3 ownername NODATA -- qname matched an existing, lone NSEC3
|
|
* ownername, but qtype was not NSEC3. NOTE: as of nsec-05, this case no
|
|
* longer exists.
|
|
*
|
|
* 4) Wildcard NODATA -- A wildcard matched the name, but not the type.
|
|
*
|
|
* 5) Opt-In DS NODATA -- the qname is covered by an opt-in span and qtype
|
|
* == DS. (or maybe some future record with the same parent-side-only
|
|
* property)
|
|
*
|
|
* @param nsec3s
|
|
* The NSEC3Records to consider.
|
|
* @param qname
|
|
* The qname in question.
|
|
* @param qtype
|
|
* The qtype in question.
|
|
* @param zonename
|
|
* The name of the zone that the NSEC3s came from.
|
|
* @return true if the NSEC3s prove the proposition.
|
|
*/
|
|
public static boolean proveNodata(List<NSEC3Record> nsec3s, Name qname,
|
|
int qtype, Name zonename) {
|
|
if (nsec3s == null || nsec3s.size() == 0) return false;
|
|
|
|
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
|
|
if (nsec3params == null) {
|
|
// st_log.debug("could not find a single set of "
|
|
// + "NSEC3 parameters (multiple parameters present)");
|
|
return false;
|
|
}
|
|
ByteArrayComparator bac = new ByteArrayComparator();
|
|
|
|
NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params),
|
|
zonename, nsec3s, nsec3params,
|
|
bac);
|
|
// Cases 1 & 2.
|
|
if (nsec3 != null) {
|
|
if (nsec3.hasType(qtype)) {
|
|
// st_log.debug("proveNodata: Matching NSEC3 proved that type existed!");
|
|
return false;
|
|
}
|
|
if (nsec3.hasType(Type.CNAME)) {
|
|
// st_log.debug("proveNodata: Matching NSEC3 proved "
|
|
// + "that a CNAME existed!");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// For cases 3 - 5, we need the proven closest encloser, and it can't
|
|
// match qname. Although, at this point, we know that it won't since we
|
|
// just checked that.
|
|
CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s,
|
|
nsec3params, bac, true);
|
|
|
|
// At this point, not finding a match or a proven closest encloser is a
|
|
// problem.
|
|
if (ce == null) {
|
|
// st_log.debug("proveNodata: did not match qname, "
|
|
// + "nor found a proven closest encloser.");
|
|
return false;
|
|
}
|
|
|
|
// Case 3: REMOVED
|
|
|
|
// Case 4:
|
|
Name wc = ceWildcard(ce.closestEncloser);
|
|
nsec3 = findMatchingNSEC3(hash(wc, nsec3params), zonename, nsec3s,
|
|
nsec3params, bac);
|
|
|
|
if (nsec3 != null) {
|
|
if (nsec3.hasType(qtype)) {
|
|
// st_log.debug("proveNodata: matching wildcard had qtype!");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Case 5.
|
|
if (qtype != Type.DS) {
|
|
// st_log.debug("proveNodata: could not find matching NSEC3, "
|
|
// +
|
|
// "nor matching wildcard, and qtype is not DS -- no more options.");
|
|
return false;
|
|
}
|
|
|
|
// We need to make sure that the covering NSEC3 is opt-in.
|
|
if (!ce.nc_nsec3.getOptInFlag()) {
|
|
// st_log.debug("proveNodata: covering NSEC3 was not "
|
|
// + "opt-in in an opt-in DS NOERROR/NODATA case.");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Prove that a positive wildcard match was appropriate (no direct match
|
|
* RRset).
|
|
*
|
|
* @param nsec3s
|
|
* The NSEC3 records to work with.
|
|
* @param qname
|
|
* The qname that was matched to the wildcard
|
|
* @param zonename
|
|
* The name of the zone that the NSEC3s come from.
|
|
* @param wildcard
|
|
* The purported wildcard that matched.
|
|
* @return true if the NSEC3 records prove this case.
|
|
*/
|
|
public static boolean proveWildcard(List<NSEC3Record> nsec3s, Name qname,
|
|
Name zonename, Name wildcard) {
|
|
if (nsec3s == null || nsec3s.size() == 0) return false;
|
|
if (qname == null || wildcard == null) return false;
|
|
|
|
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
|
|
if (nsec3params == null) {
|
|
// st_log.debug("couldn't find a single set of NSEC3 parameters (multiple parameters present).");
|
|
return false;
|
|
}
|
|
|
|
ByteArrayComparator bac = new ByteArrayComparator();
|
|
|
|
// We know what the (purported) closest encloser is by just looking at
|
|
// the
|
|
// supposed generating wildcard.
|
|
CEResponse candidate = new CEResponse(new Name(wildcard, 1), null);
|
|
|
|
// Now we still need to prove that the original data did not exist.
|
|
// Otherwise, we need to show that the next closer name is covered.
|
|
Name nextClosest = nextClosest(qname, candidate.closestEncloser);
|
|
candidate.nc_nsec3 = findCoveringNSEC3(hash(nextClosest, nsec3params),
|
|
zonename, nsec3s, nsec3params,
|
|
bac);
|
|
|
|
if (candidate.nc_nsec3 == null) {
|
|
// st_log.debug("proveWildcard: did not find a covering NSEC3 "
|
|
// + "that covered the next closer name to " + qname + " from "
|
|
// + candidate.closestEncloser + " (derived from wildcard " +
|
|
// wildcard
|
|
// + ")");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Prove that a DS response either had no DS, or wasn't a delegation point.
|
|
*
|
|
* Fundamentally there are two cases here: normal NODATA and Opt-In NODATA.
|
|
*
|
|
* @param nsec3s
|
|
* The NSEC3 RRs to examine.
|
|
* @param qname
|
|
* The name of the DS in question.
|
|
* @param zonename
|
|
* The name of the zone that the NSEC3 RRs come from.
|
|
*
|
|
* @return SecurityStatus.SECURE if it was proven that there is no DS in a
|
|
* secure (i.e., not opt-in) way, SecurityStatus.INSECURE if there
|
|
* was no DS in an insecure (i.e., opt-in) way,
|
|
* SecurityStatus.INDETERMINATE if it was clear that this wasn't a
|
|
* delegation point, and SecurityStatus.BOGUS if the proofs don't
|
|
* work out.
|
|
*/
|
|
public static int proveNoDS(List<NSEC3Record> nsec3s, Name qname,
|
|
Name zonename) {
|
|
if (nsec3s == null || nsec3s.size() == 0) return SecurityStatus.BOGUS;
|
|
|
|
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
|
|
if (nsec3params == null) {
|
|
// st_log.debug("couldn't find a single set of " +
|
|
// "NSEC3 parameters (multiple parameters present).");
|
|
return SecurityStatus.BOGUS;
|
|
}
|
|
ByteArrayComparator bac = new ByteArrayComparator();
|
|
|
|
// Look for a matching NSEC3 to qname -- this is the normal NODATA case.
|
|
NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params),
|
|
zonename, nsec3s, nsec3params,
|
|
bac);
|
|
|
|
if (nsec3 != null) {
|
|
// If the matching NSEC3 has the SOA bit set, it is from the wrong
|
|
// zone
|
|
// (the child instead of the parent). If it has the DS bit set, then
|
|
// we
|
|
// were lied to.
|
|
if (nsec3.hasType(Type.SOA) || nsec3.hasType(Type.DS)) {
|
|
return SecurityStatus.BOGUS;
|
|
}
|
|
// If the NSEC3 RR doesn't have the NS bit set, then this wasn't a
|
|
// delegation point.
|
|
if (!nsec3.hasType(Type.NS)) return SecurityStatus.INDETERMINATE;
|
|
|
|
// Otherwise, this proves no DS.
|
|
return SecurityStatus.SECURE;
|
|
}
|
|
|
|
// Otherwise, we are probably in the opt-in case.
|
|
CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s,
|
|
nsec3params, bac, true);
|
|
if (ce == null) {
|
|
return SecurityStatus.BOGUS;
|
|
}
|
|
|
|
// If we had the closest encloser proof, then we need to check that the
|
|
// covering NSEC3 was opt-in -- the proveClosestEncloser step already
|
|
// checked to see if the closest encloser was a delegation or DNAME.
|
|
if (ce.nc_nsec3.getOptInFlag()) {
|
|
return SecurityStatus.SECURE;
|
|
}
|
|
|
|
return SecurityStatus.BOGUS;
|
|
}
|
|
|
|
}
|