captive-validator/src/com/versign/tat/dnssec/SignUtils.java

477 lines
17 KiB
Java

/*
* $Id$
*
* Copyright (c) 2005 VeriSign, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
package com.versign.tat.dnssec;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.security.SignatureException;
import java.security.interfaces.DSAParams;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Date;
import java.util.Iterator;
import org.xbill.DNS.DNSKEYRecord;
import org.xbill.DNS.DNSOutput;
import org.xbill.DNS.Name;
import org.xbill.DNS.RRSIGRecord;
import org.xbill.DNS.RRset;
import org.xbill.DNS.Record;
/**
* This class contains a bunch of utility methods that are generally useful in
* signing and verifying rrsets.
*/
public class SignUtils {
/**
* This class implements a basic comparator for byte arrays. It is primarily
* useful for comparing RDATA portions of DNS records in doing DNSSEC
* canonical ordering.
*/
public static class ByteArrayComparator implements Comparator<byte[]> {
private int mOffset = 0;
private boolean mDebug = false;
public ByteArrayComparator() {
}
public ByteArrayComparator(int offset, boolean debug) {
mOffset = offset;
mDebug = debug;
}
public int compare(byte[] b1, byte[] b2) throws ClassCastException {
for (int i = mOffset; i < b1.length && i < b2.length; i++) {
if (b1[i] != b2[i]) {
if (mDebug) {
System.out.println("offset " + i + " differs (this is "
+ (i - mOffset)
+ " bytes in from our offset.)");
}
return (b1[i] & 0xFF) - (b2[i] & 0xFF);
}
}
return b1.length - b2.length;
}
}
// private static final int DSA_SIGNATURE_LENGTH = 20;
private static final int ASN1_INT = 0x02;
private static final int ASN1_SEQ = 0x30;
public static final int RR_NORMAL = 0;
public static final int RR_DELEGATION = 1;
public static final int RR_GLUE = 2;
public static final int RR_INVALID = 3;
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rrset
* the RRset being signed.
* @param signer
* the name of the signing key
* @param alg
* the algorithm of the signing key
* @param keyid
* the keyid (or footprint) of the signing key
* @param start
* the SIG inception time.
* @param expire
* the SIG expiration time.
* @param sig_ttl
* the TTL of the resulting SIG record.
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, Name signer,
int alg, int keyid, Date start,
Date expire, long sig_ttl) {
return new RRSIGRecord(rrset.getName(), rrset.getDClass(), sig_ttl,
rrset.getType(), alg, rrset.getTTL(), expire, start, keyid,
signer, null);
}
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rrset
* the RRset being signed.
* @param key
* the public KEY RR counterpart to the key being used to sign
* the RRset
* @param start
* the SIG inception time.
* @param expire
* the SIG expiration time.
* @param sig_ttl
* the TTL of the resulting SIG record.
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, DNSKEYRecord key,
Date start, Date expire,
long sig_ttl) {
return generatePreRRSIG(rrset, key.getName(), key.getAlgorithm(),
key.getFootprint(), start, expire, sig_ttl);
}
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rec
* the DNS record being signed (forming an entire RRset).
* @param key
* the public KEY RR counterpart to the key signing the record.
* @param start
* the SIG inception time.
* @param expire
* the SIG expiration time.
* @param sig_ttl
* the TTL of the result SIG record.
* @return a prototype signature based on the Record and key information.
*/
public static RRSIGRecord generatePreRRSIG(Record rec, DNSKEYRecord key,
Date start, Date expire,
long sig_ttl) {
return new RRSIGRecord(rec.getName(), rec.getDClass(), sig_ttl,
rec.getType(), key.getAlgorithm(), rec.getTTL(), expire, start,
key.getFootprint(), key.getName(), null);
}
/**
* Generate the binary image of the prototype SIG RR.
*
* @param presig
* the SIG RR prototype.
* @return the RDATA portion of the prototype SIG record. This forms the
* first part of the data to be signed.
*/
private static byte[] generatePreSigRdata(RRSIGRecord presig) {
// Generate the binary image;
DNSOutput image = new DNSOutput();
// precalculate some things
int start_time = (int) (presig.getTimeSigned().getTime() / 1000);
int expire_time = (int) (presig.getExpire().getTime() / 1000);
Name signer = presig.getSigner();
// first write out the partial SIG record (this is the SIG RDATA
// minus the actual signature.
image.writeU16(presig.getTypeCovered());
image.writeU8(presig.getAlgorithm());
image.writeU8(presig.getLabels());
image.writeU32((int) presig.getOrigTTL());
image.writeU32(expire_time);
image.writeU32(start_time);
image.writeU16(presig.getFootprint());
image.writeByteArray(signer.toWireCanonical());
return image.toByteArray();
}
/**
* Calculate the canonical wire line format of the RRset.
*
* @param rrset
* the RRset to convert.
* @param ttl
* the TTL to use when canonicalizing -- this is generally the
* TTL of the signature if there is a pre-existing signature. If
* not it is just the ttl of the rrset itself.
* @param labels
* the labels field of the signature, or 0.
* @return the canonical wire line format of the rrset. This is the second
* part of data to be signed.
*/
@SuppressWarnings("unchecked")
public static byte[] generateCanonicalRRsetData(RRset rrset, long ttl,
int labels) {
DNSOutput image = new DNSOutput();
if (ttl == 0) ttl = rrset.getTTL();
Name n = rrset.getName();
if (labels == 0) {
labels = n.labels();
} else {
// correct for Name()'s conception of label count.
labels++;
}
boolean wildcardName = false;
if (n.labels() != labels) {
n = n.wild(n.labels() - labels);
wildcardName = true;
// log.trace("Detected wildcard expansion: " + rrset.getName() +
// " changed to " + n);
}
// now convert the wire format records in the RRset into a
// list of byte arrays.
ArrayList<byte[]> canonical_rrs = new ArrayList<byte[]>();
for (Iterator i = rrset.rrs(); i.hasNext();) {
Record r = (Record) i.next();
if (r.getTTL() != ttl || wildcardName) {
// If necessary, we need to create a new record with a new ttl
// or ownername.
// In the TTL case, this avoids changing the ttl in the
// response.
r = Record.newRecord(n, r.getType(), r.getDClass(), ttl,
r.rdataToWireCanonical());
}
byte[] wire_fmt = r.toWireCanonical();
canonical_rrs.add(wire_fmt);
}
// put the records into the correct ordering.
// Calculate the offset where the RDATA begins (we have to skip
// past the length byte)
int offset = rrset.getName().toWireCanonical().length + 10;
ByteArrayComparator bac = new ByteArrayComparator(offset, false);
Collections.sort(canonical_rrs, bac);
for (Iterator<byte[]> i = canonical_rrs.iterator(); i.hasNext();) {
byte[] wire_fmt_rec = i.next();
image.writeByteArray(wire_fmt_rec);
}
return image.toByteArray();
}
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
* @param rrset
* the RRset to be signed.
* @param presig
* a prototype SIG RR created using the same RRset.
* @return a block of data ready to be signed.
*/
public static byte[] generateSigData(RRset rrset, RRSIGRecord presig)
throws IOException {
byte[] rrset_data = generateCanonicalRRsetData(rrset,
presig.getOrigTTL(),
presig.getLabels());
return generateSigData(rrset_data, presig);
}
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
* @param rrset_data
* the RRset converted into canonical wire line format (as per
* the canonicalization rules in RFC 2535).
* @param presig
* the prototype signature based on the same RRset represented in
* <code>rrset_data</code>.
* @return a block of data ready to be signed.
*/
public static byte[] generateSigData(byte[] rrset_data, RRSIGRecord presig)
throws IOException {
byte[] sig_rdata = generatePreSigRdata(presig);
ByteArrayOutputStream image = new ByteArrayOutputStream(
sig_rdata.length + rrset_data.length);
image.write(sig_rdata);
image.write(rrset_data);
return image.toByteArray();
}
/**
* Given the actual signature and the prototype signature, combine them and
* return the fully formed RRSIGRecord.
*
* @param signature
* the cryptographic signature, in DNSSEC format.
* @param presig
* the prototype RRSIG RR to add the signature to.
* @return the fully formed RRSIG RR.
*/
public static RRSIGRecord generateRRSIG(byte[] signature, RRSIGRecord presig) {
return new RRSIGRecord(presig.getName(), presig.getDClass(),
presig.getTTL(), presig.getTypeCovered(),
presig.getAlgorithm(), presig.getOrigTTL(), presig.getExpire(),
presig.getTimeSigned(), presig.getFootprint(),
presig.getSigner(), signature);
}
/**
* Converts from a RFC 2536 formatted DSA signature to a JCE (ASN.1)
* formatted signature.
*
* <p>
* ASN.1 format = ASN1_SEQ . seq_length . ASN1_INT . Rlength . R . ANS1_INT
* . Slength . S
* </p>
*
* The integers R and S may have a leading null byte to force the integer
* positive.
*
* @param signature
* the RFC 2536 formatted DSA signature.
* @return The ASN.1 formatted DSA signature.
* @throws SignatureException
* if there was something wrong with the RFC 2536 formatted
* signature.
*/
public static byte[] convertDSASignature(byte[] signature)
throws SignatureException {
if (signature.length != 41)
throw new SignatureException(
"RFC 2536 signature not expected length.");
byte r_pad = 0;
byte s_pad = 0;
// handle initial null byte padding.
if (signature[1] < 0) r_pad++;
if (signature[21] < 0) s_pad++;
// ASN.1 length = R length + S length + (2 + 2 + 2), where each 2
// is for a ASN.1 type-length byte pair of which there are three
// (SEQ, INT, INT).
byte sig_length = (byte) (40 + r_pad + s_pad + 6);
byte sig[] = new byte[sig_length];
byte pos = 0;
sig[pos++] = ASN1_SEQ;
sig[pos++] = (byte) (sig_length - 2); // all but the SEQ type+length.
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + r_pad);
// copy the value of R, leaving a null byte if necessary
if (r_pad == 1) sig[pos++] = 0;
System.arraycopy(signature, 1, sig, pos, 20);
pos += 20;
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + s_pad);
// copy the value of S, leaving a null byte if necessary
if (s_pad == 1) sig[pos++] = 0;
System.arraycopy(signature, 21, sig, pos, 20);
return sig;
}
/**
* Converts from a JCE (ASN.1) formatted DSA signature to a RFC 2536
* compliant signature.
*
* <p>
* rfc2536 format = T . R . S
* </p>
*
* where T is a number between 0 and 8, which is based on the DSA key
* length, and R & S are formatted to be exactly 20 bytes each (no leading
* null bytes).
*
* @param params
* the DSA parameters associated with the DSA key used to
* generate the signature.
* @param signature
* the ASN.1 formatted DSA signature.
* @return a RFC 2536 formatted DSA signature.
* @throws SignatureException
* if something is wrong with the ASN.1 format.
*/
public static byte[] convertDSASignature(DSAParams params, byte[] signature)
throws SignatureException {
if (signature[0] != ASN1_SEQ || signature[2] != ASN1_INT) {
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT");
}
byte r_pad = (byte) (signature[3] - 20);
if (signature[24 + r_pad] != ASN1_INT) {
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT, INT");
}
// log.trace("(start) ASN.1 DSA Sig:\n" + base64.toString(signature));
byte s_pad = (byte) (signature[25 + r_pad] - 20);
byte[] sig = new byte[41]; // all rfc2536 signatures are 41 bytes.
// Calculate T:
sig[0] = (byte) ((params.getP().bitLength() - 512) / 64);
// copy R value
if (r_pad >= 0) {
System.arraycopy(signature, 4 + r_pad, sig, 1, 20);
} else {
// R is shorter than 20 bytes, so right justify the number
// (r_pad is negative here, remember?).
Arrays.fill(sig, 1, 1 - r_pad, (byte) 0);
System.arraycopy(signature, 4, sig, 1 - r_pad, 20 + r_pad);
}
// copy S value
if (s_pad >= 0) {
System.arraycopy(signature, 26 + r_pad + s_pad, sig, 21, 20);
} else {
// S is shorter than 20 bytes, so right justify the number
// (s_pad is negative here).
Arrays.fill(sig, 21, 21 - s_pad, (byte) 0);
System.arraycopy(signature, 26 + r_pad, sig, 21 - s_pad, 20 + s_pad);
}
// if (r_pad < 0 || s_pad < 0)
// {
// log.trace("(finish ***) RFC 2536 DSA Sig:\n" + base64.toString(sig));
//
// }
// else
// {
// log.trace("(finish) RFC 2536 DSA Sig:\n" + base64.toString(sig));
// }
return sig;
}
}