captive-validator/src/se/rfc/unbound/CaptiveValidator.java

717 lines
28 KiB
Java

/*
* Copyright (c) 2009 VeriSign, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
package se.rfc.unbound;
import java.io.IOException;
import java.util.*;
import org.xbill.DNS.*;
/**
* This resolver module implements a "captive" DNSSEC validator. The captive
* validator does not have direct access to the Internet and DNS system --
* instead it attempts to validate DNS messages using only configured context.
* This is useful for determining if responses coming from a given authoritative
* server will validate independent of the normal chain of trust.
*/
public class CaptiveValidator {
// A data structure holding all all of our trusted keys.
private TrustAnchorStore mTrustedKeys;
// The local validation utilities.
private ValUtils mValUtils;
// The local verification utility.
private DnsSecVerifier mVerifier;
public CaptiveValidator() {
mVerifier = new DnsSecVerifier();
mValUtils = new ValUtils(mVerifier);
mTrustedKeys = new TrustAnchorStore();
}
// ---------------- Module Initialization -------------------
/**
* Initialize the module.
*/
public void init(Properties config) throws Exception {
mVerifier.init(config);
String s = config.getProperty("dns.trust_anchor_file");
if (s != null) {
try {
loadTrustAnchors(s);
} catch (IOException e) {
System.err.println("Error loading trust anchors: " + e);
}
}
}
/**
* Load the trust anchor file into the trust anchor store. The trust anchors
* are currently stored in a zone file format list of DNSKEY or DS records.
*
* @param filename
* The trust anchor file.
* @throws IOException
*/
private void loadTrustAnchors(String filename) throws IOException {
System.err.println("reading trust anchor file file: " + filename);
// First read in the whole trust anchor file.
Master master = new Master(filename, Name.root, 0);
ArrayList records = new ArrayList();
Record r = null;
while ((r = master.nextRecord()) != null) {
records.add(r);
}
// Record.compareTo() should sort them into DNSSEC canonical order.
// Don't care about canonical order per se, but do want them to be
// formable into RRsets.
Collections.sort(records);
SRRset cur_rrset = new SRRset();
for (Iterator i = records.iterator(); i.hasNext();) {
r = (Record) i.next();
// Skip RR types that cannot be used as trust anchors.
if (r.getType() != Type.DNSKEY && r.getType() != Type.DS) continue;
// If our cur_rrset is empty, we can just add it.
if (cur_rrset.size() == 0) {
cur_rrset.addRR(r);
continue;
}
// If this record matches our current RRset, we can just add it.
if (cur_rrset.getName().equals(r.getName())
&& cur_rrset.getType() == r.getType()
&& cur_rrset.getDClass() == r.getDClass()) {
cur_rrset.addRR(r);
continue;
}
// Otherwise, we add the rrset to our set of trust anchors.
mTrustedKeys.store(cur_rrset);
cur_rrset = new SRRset();
cur_rrset.addRR(r);
}
// add the last rrset (if it was not empty)
if (cur_rrset.size() > 0) {
mTrustedKeys.store(cur_rrset);
}
}
// ----------------- Validation Support ----------------------
private SRRset findKeys(SMessage message) {
Name qname = message.getQName();
int qclass = message.getQClass();
return mTrustedKeys.find(qname, qclass);
}
/**
* Check to see if a given response needs to go through the validation
* process. Typical reasons for this routine to return false are: CD bit was
* on in the original request, the response was already validated, or the
* response is a kind of message that is unvalidatable (i.e., SERVFAIL,
* REFUSED, etc.)
*
* @param message
* The message to check.
* @param origRequest
* The original request received from the client.
*
* @return true if the response could use validation (although this does not
* mean we can actually validate this response).
*/
private boolean needsValidation(SMessage message) {
// FIXME: add check to see if message qname is at or below any of our
// configured trust anchors.
int rcode = message.getRcode();
if (rcode != Rcode.NOERROR && rcode != Rcode.NXDOMAIN) {
// log.debug("cannot validate non-answer.");
// log.trace("non-answer: " + response);
return false;
}
return true;
}
/**
* Given a "positive" response -- a response that contains an answer to the
* question, and no CNAME chain, validate this response. This generally
* consists of verifying the answer RRset and the authority RRsets.
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
* @param response
* The response to validate.
* @param request
* The request that generated this response.
* @param key_rrset
* The trusted DNSKEY rrset that matches the signer of the
* answer.
*/
private void validatePositiveResponse(SMessage message, SRRset key_rrset) {
Name qname = message.getQName();
int qtype = message.getQType();
SMessage m = message;
// validate the ANSWER section - this will be the answer itself
SRRset[] rrsets = m.getSectionRRsets(Section.ANSWER);
Name wc = null;
boolean wcNSEC_ok = false;
boolean dname = false;
List nsec3s = null;
for (int i = 0; i < rrsets.length; i++) {
// Skip the CNAME following a (validated) DNAME.
// Because of the normalization routines in NameserverClient, there
// will always be an unsigned CNAME following a DNAME (unless
// qtype=DNAME).
if (dname && rrsets[i].getType() == Type.CNAME) {
dname = false;
continue;
}
// Verify the answer rrset.
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
// If the (answer) rrset failed to validate, then this message is
// BAD.
if (status != SecurityStatus.SECURE) {
// log.debug("Positive response has failed ANSWER rrset: "
// + rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
// Check to see if the rrset is the result of a wildcard expansion.
// If so, an additional check will need to be made in the authority
// section.
wc = ValUtils.rrsetWildcard(rrsets[i]);
// Notice a DNAME that should be followed by an unsigned CNAME.
if (qtype != Type.DNAME && rrsets[i].getType() == Type.DNAME) {
dname = true;
}
}
// validate the AUTHORITY section as well - this will generally be the
// NS rrset (which could be missing, no problem)
rrsets = m.getSectionRRsets(Section.AUTHORITY);
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
// If anything in the authority section fails to be secure, we have
// a
// bad message.
if (status != SecurityStatus.SECURE) {
// log.debug("Positive response has failed AUTHORITY rrset: "
// + rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
// If this is a positive wildcard response, and we have a (just
// verified) NSEC record, try to use it to 1) prove that qname
// doesn't exist and 2) that the correct wildcard was used.
if (wc != null && rrsets[i].getType() == Type.NSEC) {
NSECRecord nsec = (NSECRecord) rrsets[i].first();
if (ValUtils.nsecProvesNameError(nsec, qname,
key_rrset.getName())) {
Name nsec_wc = ValUtils.nsecWildcard(qname, nsec);
if (!wc.equals(nsec_wc)) {
// log.debug("Postive wildcard response wasn't generated "
// + "by the correct wildcard");
m.setStatus(SecurityStatus.BOGUS);
return;
}
wcNSEC_ok = true;
}
}
// Otherwise, if this is a positive wildcard response and we have
// NSEC3 records, collect them.
if (wc != null && rrsets[i].getType() == Type.NSEC3) {
if (nsec3s == null) nsec3s = new ArrayList();
nsec3s.add(rrsets[i].first());
}
}
// If this was a positive wildcard response that we haven't already
// proven, and we have NSEC3 records, try to prove it using the NSEC3
// records.
if (wc != null && !wcNSEC_ok && nsec3s != null) {
if (NSEC3ValUtils.proveWildcard(nsec3s, qname, key_rrset.getName(),
wc)) {
wcNSEC_ok = true;
}
}
// If after all this, we still haven't proven the positive wildcard
// response, fail.
if (wc != null && !wcNSEC_ok) {
// log.debug("positive response was wildcard expansion and "
// + "did not prove original data did not exist");
m.setStatus(SecurityStatus.BOGUS);
return;
}
// log.trace("Successfully validated postive response");
m.setStatus(SecurityStatus.SECURE);
}
/**
* Given an "ANY" response -- a response that contains an answer to a
* qtype==ANY question, with answers. This consists of simply verifying all
* present answer/auth RRsets, with no checking that all types are present.
*
* NOTE: it may be possible to get parent-side delegation point records
* here, which won't all be signed. Right now, this routine relies on the
* upstream iterative resolver to not return these responses -- instead
* treating them as referrals.
*
* NOTE: RFC 4035 is silent on this issue, so this may change upon
* clarification.
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
* @param message
* The response to validate.
* @param key_rrset
* The trusted DNSKEY rrset that matches the signer of the
* answer.
*/
private void validateAnyResponse(SMessage message, SRRset key_rrset) {
int qtype = message.getQType();
if (qtype != Type.ANY)
throw new IllegalArgumentException(
"ANY validation called on non-ANY response.");
SMessage m = message;
// validate the ANSWER section.
SRRset[] rrsets = m.getSectionRRsets(Section.ANSWER);
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
// If the (answer) rrset failed to validate, then this message is
// BAD.
if (status != SecurityStatus.SECURE) {
// log.debug("Postive response has failed ANSWER rrset: "
// + rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
}
// validate the AUTHORITY section as well - this will be the NS rrset
// (which could be missing, no problem)
rrsets = m.getSectionRRsets(Section.AUTHORITY);
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
// If anything in the authority section fails to be secure, we have
// a
// bad message.
if (status != SecurityStatus.SECURE) {
// log.debug("Postive response has failed AUTHORITY rrset: "
// + rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
}
// log.trace("Successfully validated postive ANY response");
m.setStatus(SecurityStatus.SECURE);
}
/**
* Validate a NOERROR/NODATA signed response -- a response that has a
* NOERROR Rcode but no ANSWER section RRsets. This consists of verifying
* the authority section rrsets and making certain that the authority
* section NSEC/NSEC3s proves that the qname does exist and the qtype
* doesn't.
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
* @param response
* The response to validate.
* @param request
* The request that generated this response.
* @param key_rrset
* The trusted DNSKEY rrset that signs this response.
*/
private void validateNodataResponse(SMessage message, SRRset key_rrset) {
Name qname = message.getQName();
int qtype = message.getQType();
SMessage m = message;
// Since we are here, there must be nothing in the ANSWER section to
// validate. (Note: CNAME/DNAME responses will not directly get here --
// instead they are broken down into individual CNAME/DNAME/final answer
// responses.)
// validate the AUTHORITY section
SRRset[] rrsets = m.getSectionRRsets(Section.AUTHORITY);
boolean hasValidNSEC = false; // If true, then the NODATA has been
// proven.
Name ce = null; // for wildcard nodata responses. This is the proven
// closest encloser.
NSECRecord wc = null; // for wildcard nodata responses. This is the
// wildcard NSEC.
List nsec3s = null; // A collection of NSEC3 RRs found in the authority
// section.
Name nsec3Signer = null; // The RRSIG signer field for the NSEC3 RRs.
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
if (status != SecurityStatus.SECURE) {
// log.debug("NODATA response has failed AUTHORITY rrset: "
// + rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
// If we encounter an NSEC record, try to use it to prove NODATA.
// This needs to handle the ENT NODATA case.
if (rrsets[i].getType() == Type.NSEC) {
NSECRecord nsec = (NSECRecord) rrsets[i].first();
if (ValUtils.nsecProvesNodata(nsec, qname, qtype)) {
hasValidNSEC = true;
if (nsec.getName().isWild()) wc = nsec;
} else if (ValUtils.nsecProvesNameError(
nsec,
qname,
rrsets[i].getSignerName())) {
ce = ValUtils.closestEncloser(qname, nsec);
}
}
// Collect any NSEC3 records present.
if (rrsets[i].getType() == Type.NSEC3) {
if (nsec3s == null) nsec3s = new ArrayList();
nsec3s.add(rrsets[i].first());
nsec3Signer = rrsets[i].getSignerName();
}
}
// check to see if we have a wildcard NODATA proof.
// The wildcard NODATA is 1 NSEC proving that qname does not exists (and
// also proving what the closest encloser is), and 1 NSEC showing the
// matching wildcard, which must be *.closest_encloser.
if (ce != null || wc != null) {
try {
Name wc_name = new Name("*", ce);
if (!wc_name.equals(wc.getName())) {
hasValidNSEC = false;
}
} catch (TextParseException e) {
// log.error(e);
}
}
NSEC3ValUtils.stripUnknownAlgNSEC3s(nsec3s);
if (!hasValidNSEC && nsec3s != null && nsec3s.size() > 0) {
// try to prove NODATA with our NSEC3 record(s)
hasValidNSEC = NSEC3ValUtils.proveNodata(nsec3s, qname, qtype,
nsec3Signer);
}
if (!hasValidNSEC) {
// log.debug("NODATA response failed to prove NODATA "
// + "status with NSEC/NSEC3");
// log.trace("Failed NODATA:\n" + m);
m.setStatus(SecurityStatus.BOGUS);
return;
}
// log.trace("sucessfully validated NODATA response.");
m.setStatus(SecurityStatus.SECURE);
}
/**
* Validate a NAMEERROR signed response -- a response that has a NXDOMAIN
* Rcode. This consists of verifying the authority section rrsets and making
* certain that the authority section NSEC proves that the qname doesn't
* exist and the covering wildcard also doesn't exist..
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
* @param response
* The response to validate.
* @param request
* The request that generated this response.
* @param key_rrset
* The trusted DNSKEY rrset that signs this response.
*/
private void validateNameErrorResponse(SMessage message, SRRset key_rrset) {
Name qname = message.getQName();
SMessage m = message;
// FIXME: should we check to see if there is anything in the answer
// section? if so, what should the result be?
// Validate the authority section -- all RRsets in the authority section
// must be signed and valid.
// In addition, the NSEC record(s) must prove the NXDOMAIN condition.
boolean hasValidNSEC = false;
boolean hasValidWCNSEC = false;
SRRset[] rrsets = m.getSectionRRsets(Section.AUTHORITY);
List nsec3s = null;
Name nsec3Signer = null;
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
if (status != SecurityStatus.SECURE) {
// log.debug("NameError response has failed AUTHORITY rrset: "
// + rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
if (rrsets[i].getType() == Type.NSEC) {
NSECRecord nsec = (NSECRecord) rrsets[i].first();
if (ValUtils.nsecProvesNameError(nsec, qname,
rrsets[i].getSignerName())) {
hasValidNSEC = true;
}
if (ValUtils.nsecProvesNoWC(nsec, qname,
rrsets[i].getSignerName())) {
hasValidWCNSEC = true;
}
}
if (rrsets[i].getType() == Type.NSEC3) {
if (nsec3s == null) nsec3s = new ArrayList();
nsec3s.add(rrsets[i].first());
nsec3Signer = rrsets[i].getSignerName();
}
}
NSEC3ValUtils.stripUnknownAlgNSEC3s(nsec3s);
if (nsec3s != null && nsec3s.size() > 0) {
// log.debug("Validating nxdomain: using NSEC3 records");
// Attempt to prove name error with nsec3 records.
if (NSEC3ValUtils.allNSEC3sIgnoreable(nsec3s, key_rrset, mVerifier)) {
// log.debug("all NSEC3s were validated but ignored.");
m.setStatus(SecurityStatus.INSECURE);
return;
}
hasValidNSEC = NSEC3ValUtils.proveNameError(nsec3s, qname,
nsec3Signer);
// Note that we assume that the NSEC3ValUtils proofs encompass the
// wildcard part of the proof.
hasValidWCNSEC = hasValidNSEC;
}
// If the message fails to prove either condition, it is bogus.
if (!hasValidNSEC) {
// log.debug("NameError response has failed to prove: "
// + "qname does not exist");
m.setStatus(SecurityStatus.BOGUS);
return;
}
if (!hasValidWCNSEC) {
// log.debug("NameError response has failed to prove: "
// + "covering wildcard does not exist");
m.setStatus(SecurityStatus.BOGUS);
return;
}
// Otherwise, we consider the message secure.
// log.trace("successfully validated NAME ERROR response.");
m.setStatus(SecurityStatus.SECURE);
}
// /**
// * This state is used for validating CNAME-type responses -- i.e., responses
// * that have CNAME chains.
// *
// * It primarily is responsible for breaking down the response into a series
// * of separately validated queries & responses.
// *
// * @param event
// * @param state
// * @return
// */
// private boolean processCNAME(DNSEvent event, ValEventState state) {
// Request req = event.getRequest();
//
// Name qname = req.getQName();
// int qtype = req.getQType();
// int qclass = req.getQClass();
//
// SMessage m = event.getResponse().getSMessage();
//
// if (state.cnameSname == null) state.cnameSname = qname;
//
// // We break the chain down by re-querying for the specific CNAME or
// // DNAME
// // (or final answer).
// SRRset[] rrsets = m.getSectionRRsets(Section.ANSWER);
//
// while (state.cnameIndex < rrsets.length) {
// SRRset rrset = rrsets[state.cnameIndex++];
// Name rname = rrset.getName();
// int rtype = rrset.getType();
//
// // Skip DNAMEs -- prefer to query for the generated CNAME,
// if (rtype == Type.DNAME && qtype != Type.DNAME) continue;
//
// // Set the SNAME if we are dealing with a CNAME
// if (rtype == Type.CNAME) {
// CNAMERecord cname = (CNAMERecord) rrset.first();
// state.cnameSname = cname.getTarget();
// }
//
// // Note if the current rrset is the answer. In that case, we want to
// // set
// // the final state differently.
// // For non-answers, the response ultimately comes back here.
// int final_state = ValEventState.CNAME_RESP_STATE;
// if (isAnswerRRset(rrset.getName(), rtype, state.cnameSname, qtype,
// Section.ANSWER)) {
// // If this is an answer, however, break out of this loop.
// final_state = ValEventState.CNAME_ANS_RESP_STATE;
// }
//
// // Generate the sub-query.
// Request localRequest = generateLocalRequest(rname, rtype, qclass);
// DNSEvent localEvent = generateLocalEvent(event, localRequest,
// ValEventState.INIT_STATE,
// final_state);
//
// // ...and send it along.
// processLocalRequest(localEvent);
// return false;
// }
//
// // Something odd has happened if we get here.
// log.warn("processCNAME: encountered unknown issue handling a CNAME chain.");
// return false;
// }
//
// private boolean processCNAMEResponse(DNSEvent event, ValEventState state) {
// DNSEvent forEvent = event.forEvent();
// ValEventState forState = getModuleState(forEvent);
//
// SMessage resp = event.getResponse().getSMessage();
// if (resp.getStatus() != SecurityStatus.SECURE) {
// forEvent.getResponse().getSMessage().setStatus(resp.getStatus());
// forState.state = forState.finalState;
// handleResponse(forEvent, forState);
// return false;
// }
//
// forState.state = ValEventState.CNAME_STATE;
// handleResponse(forEvent, forState);
// return false;
// }
//
// private boolean processCNAMEAnswer(DNSEvent event, ValEventState state) {
// DNSEvent forEvent = event.forEvent();
// ValEventState forState = getModuleState(forEvent);
//
// SMessage resp = event.getResponse().getSMessage();
// SMessage forResp = forEvent.getResponse().getSMessage();
//
// forResp.setStatus(resp.getStatus());
//
// forState.state = forState.finalState;
// handleResponse(forEvent, forState);
// return false;
// }
public byte validateMessage(SMessage message) {
SRRset key_rrset = findKeys(message);
if (key_rrset == null) {
return SecurityStatus.BOGUS;
}
int subtype = ValUtils.classifyResponse(message);
switch (subtype) {
case ValUtils.POSITIVE:
// log.trace("Validating a positive response");
validatePositiveResponse(message, key_rrset);
break;
case ValUtils.NODATA:
// log.trace("Validating a nodata response");
validateNodataResponse(message, key_rrset);
break;
case ValUtils.NAMEERROR:
// log.trace("Validating a nxdomain response");
validateNameErrorResponse(message, key_rrset);
break;
case ValUtils.CNAME:
// log.trace("Validating a cname response");
// forward on to the special CNAME state for this.
// state.state = ValEventState.CNAME_STATE;
break;
case ValUtils.ANY:
// log.trace("Validating a postive ANY response");
validateAnyResponse(message, key_rrset);
break;
default:
// log.error("unhandled response subtype: " + subtype);
}
return message.getSecurityStatus().getStatus();
}
}