// Copyright (C) 2001-2003, 2022 Verisign, Inc. // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 // USA package com.verisignlabs.dnssec.security; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.security.SignatureException; import java.security.interfaces.DSAParams; import java.time.Instant; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashSet; import java.util.Iterator; import java.util.List; import java.util.ListIterator; import java.util.Set; import java.util.logging.Logger; import org.xbill.DNS.DClass; import org.xbill.DNS.DNSKEYRecord; import org.xbill.DNS.DNSOutput; import org.xbill.DNS.DNSSEC; import org.xbill.DNS.DSRecord; import org.xbill.DNS.NSEC3PARAMRecord; import org.xbill.DNS.NSEC3Record; import org.xbill.DNS.NSECRecord; import org.xbill.DNS.Name; import org.xbill.DNS.RRSIGRecord; import org.xbill.DNS.RRset; import org.xbill.DNS.Record; import org.xbill.DNS.SOARecord; import org.xbill.DNS.Type; import org.xbill.DNS.utils.base64; /** * This class contains a bunch of utility methods that are generally useful in * signing zones. * * @author David Blacka */ public class SignUtils { private static final int ASN1_INT = 0x02; private static final int ASN1_SEQ = 0x30; public static final int RR_NORMAL = 0; public static final int RR_DELEGATION = 1; public static final int RR_GLUE = 2; public static final int RR_INVALID = 3; public static final int RR_DNAME = 4; private static Logger log; static { log = Logger.getLogger(SignUtils.class.toString()); } public static void setLog(Logger v) { log = v; } private SignUtils() { } /** * Generate from some basic information a prototype RRSIG RR containing * everything but the actual signature itself. * * @param rrset the RRset being signed. * @param key the public DNSKEY RR counterpart to the key being used to sign * the RRset * @param start the RRSIG inception time. * @param expire the RRSIG expiration time. * @param sigTTL the TTL of the resulting RRSIG record. * * @return a prototype signature based on the RRset and key information. */ public static RRSIGRecord generatePreRRSIG(RRset rrset, DNSKEYRecord key, Instant start, Instant expire, long sigTTL) { return new RRSIGRecord(rrset.getName(), rrset.getDClass(), sigTTL, rrset.getType(), key.getAlgorithm(), (int) rrset.getTTL(), expire, start, key.getFootprint(), key.getName(), null); } /** * Generate from some basic information a prototype RRSIG RR containing * everything but the actual signature itself. * * @param rec the DNS record being signed (forming an entire RRset). * @param key the public DNSKEY RR counterpart to the key signing the record. * @param start the RRSIG inception time. * @param expire the RRSIG expiration time. * @param sigTTL the TTL of the result RRSIG record. * * @return a prototype signature based on the Record and key information. */ public static RRSIGRecord generatePreRRSIG(Record rec, DNSKEYRecord key, Instant start, Instant expire, long sigTTL) { return new RRSIGRecord(rec.getName(), rec.getDClass(), sigTTL, rec.getType(), key.getAlgorithm(), rec.getTTL(), expire, start, key.getFootprint(), key.getName(), null); } /** * Generate the binary image of the prototype RRSIG RR. * * @param presig the RRSIG RR prototype. * @return the RDATA portion of the prototype RRSIG record. This forms the * first part of the data to be signed. */ private static byte[] generatePreSigRdata(RRSIGRecord presig) { // Generate the binary image DNSOutput image = new DNSOutput(); // precalc some things long startTime = presig.getTimeSigned().getEpochSecond(); long expireTime = presig.getExpire().getEpochSecond(); Name signer = presig.getSigner(); // first write out the partial SIG record (this is the SIG RDATA // minus the actual signature. image.writeU16(presig.getTypeCovered()); image.writeU8(presig.getAlgorithm()); image.writeU8(presig.getLabels()); image.writeU32((int) presig.getOrigTTL()); image.writeU32(expireTime); image.writeU32(startTime); image.writeU16(presig.getFootprint()); image.writeByteArray(signer.toWireCanonical()); return image.toByteArray(); } /** * Calculate the canonical wire line format of the RRset. * * @param rrset the RRset to convert. * @param ttl the TTL to use when canonicalizing -- this is generally the TTL * of the signature if there is a pre-existing signature. If not * it is just the ttl of the rrset itself. * @param labels the labels field of the signature, or 0. * @return the canonical wire line format of the rrset. This is the second * part of data to be signed. */ public static byte[] generateCanonicalRRsetData(RRset rrset, long ttl, int labels) { DNSOutput image = new DNSOutput(); if (ttl == 0) { ttl = rrset.getTTL(); } Name n = rrset.getName(); if (labels == 0) { labels = n.labels(); } else { // correct for Name()'s conception of label count. labels++; } boolean wildcardName = false; if (n.labels() != labels) { n = n.wild(n.labels() - labels); wildcardName = true; log.fine("Detected wildcard expansion: " + rrset.getName() + " changed to " + n); } // now convert the wire format records in the RRset into a // list of byte arrays. ArrayList canonicalRRs = new ArrayList<>(); for (Record r : rrset.rrs()) { if (r.getTTL() != ttl || wildcardName) { // If necessary, we need to create a new record with a new ttl // or ownername. // In the TTL case, this avoids changing the ttl in the // response. r = Record.newRecord(n, r.getType(), r.getDClass(), ttl, r.rdataToWireCanonical()); } byte[] wireFmt = r.toWireCanonical(); canonicalRRs.add(wireFmt); } // put the records into the correct ordering. // Calculate the offset where the RDATA begins (we have to skip // past the length byte) int offset = rrset.getName().toWireCanonical().length + 10; ByteArrayComparator bac = new ByteArrayComparator(offset, false); Collections.sort(canonicalRRs, bac); for (byte[] wire_fmt_rec : canonicalRRs) { image.writeByteArray(wire_fmt_rec); } return image.toByteArray(); } /** * Given an RRset and the prototype signature, generate the canonical data * that is to be signed. * * @param rrset the RRset to be signed. * @param presig a prototype SIG RR created using the same RRset. * @return a block of data ready to be signed. */ public static byte[] generateSigData(RRset rrset, RRSIGRecord presig) throws IOException { byte[] rrsetData = generateCanonicalRRsetData(rrset, presig.getOrigTTL(), presig.getLabels()); return generateSigData(rrsetData, presig); } /** * Given an RRset and the prototype signature, generate the canonical data * that is to be signed. * * @param rrsetData the RRset converted into canonical wire line format (as * per the canonicalization rules in RFC 2535). * @param presig the prototype signature based on the same RRset represented * in rrset_data. * @return a block of data ready to be signed. */ public static byte[] generateSigData(byte[] rrsetData, RRSIGRecord presig) throws IOException { byte[] sigRdata = generatePreSigRdata(presig); ByteArrayOutputStream image = new ByteArrayOutputStream(sigRdata.length + rrsetData.length); image.write(sigRdata); image.write(rrsetData); return image.toByteArray(); } /** * Given the actual signature and the prototype signature, combine them and * return the fully formed RRSIGRecord. * * @param signature the cryptographic signature, in DNSSEC format. * @param presig the prototype RRSIG RR to add the signature to. * @return the fully formed RRSIG RR. */ public static RRSIGRecord generateRRSIG(byte[] signature, RRSIGRecord presig) { return new RRSIGRecord(presig.getName(), presig.getDClass(), presig.getTTL(), presig.getTypeCovered(), presig.getAlgorithm(), presig.getOrigTTL(), presig.getExpire(), presig.getTimeSigned(), presig.getFootprint(), presig.getSigner(), signature); } /** * Converts from a RFC 2536 formatted DSA signature to a JCE (ASN.1) formatted * signature. * *

* ASN.1 format = ASN1_SEQ . seq_length . ASN1_INT . Rlength . R . ANS1_INT . * Slength . S *

* * The integers R and S may have a leading null byte to force the integer * positive. * * @param signature the RFC 2536 formatted DSA signature. * @return The ASN.1 formatted DSA signature. * @throws SignatureException if there was something wrong with the RFC 2536 * formatted signature. */ public static byte[] convertDSASignature(byte[] signature) throws SignatureException { if (signature.length != 41) throw new SignatureException("RFC 2536 signature not expected length."); byte rPad = 0; byte sPad = 0; // handle initial null byte padding. if (signature[1] < 0) rPad++; if (signature[21] < 0) sPad++; // ASN.1 length = R length + S length + (2 + 2 + 2), where each 2 // is for a ASN.1 type-length byte pair of which there are three // (SEQ, INT, INT). byte sigLength = (byte) (40 + rPad + sPad + 6); byte[] sig = new byte[sigLength]; byte pos = 0; sig[pos++] = ASN1_SEQ; sig[pos++] = (byte) (sigLength - 2); // all but the SEQ type+length. sig[pos++] = ASN1_INT; sig[pos++] = (byte) (20 + rPad); // copy the value of R, leaving a null byte if necessary if (rPad == 1) sig[pos++] = 0; System.arraycopy(signature, 1, sig, pos, 20); pos += 20; sig[pos++] = ASN1_INT; sig[pos++] = (byte) (20 + sPad); // copy the value of S, leaving a null byte if necessary if (sPad == 1) sig[pos++] = 0; System.arraycopy(signature, 21, sig, pos, 20); return sig; } /** * Converts from a JCE (ASN.1) formatted DSA signature to a RFC 2536 compliant * signature. * *

* rfc2536 format = T . R . S *

* * where T is a number between 0 and 8, which is based on the DSA key length, * and R & S are formatted to be exactly 20 bytes each (no leading null * bytes). * * @param params the DSA parameters associated with the DSA key used to * generate the signature. * @param signature the ASN.1 formatted DSA signature. * @return a RFC 2536 formatted DSA signature. * @throws SignatureException if something is wrong with the ASN.1 format. */ public static byte[] convertDSASignature(DSAParams params, byte[] signature) throws SignatureException { if (signature[0] != ASN1_SEQ || signature[2] != ASN1_INT) { throw new SignatureException("Invalid ASN.1 signature format: expected SEQ, INT"); } byte rPad = (byte) (signature[3] - 20); if (signature[24 + rPad] != ASN1_INT) { throw new SignatureException( "Invalid ASN.1 signature format: expected SEQ, INT, INT"); } log.finer("(start) ASN.1 DSA Sig:\n" + base64.toString(signature)); byte sPad = (byte) (signature[25 + rPad] - 20); byte[] sig = new byte[41]; // all rfc2536 signatures are 41 bytes. // Calculate T: sig[0] = (byte) ((params.getP().bitLength() - 512) / 64); // copy R value if (rPad >= 0) { System.arraycopy(signature, 4 + rPad, sig, 1, 20); } else { // R is shorter than 20 bytes, so right justify the number // (r_pad is negative here, remember?). Arrays.fill(sig, 1, 1 - rPad, (byte) 0); System.arraycopy(signature, 4, sig, 1 - rPad, 20 + rPad); } // copy S value if (sPad >= 0) { System.arraycopy(signature, 26 + rPad + sPad, sig, 21, 20); } else { // S is shorter than 20 bytes, so right justify the number // (s_pad is negative here). Arrays.fill(sig, 21, 21 - sPad, (byte) 0); System.arraycopy(signature, 26 + rPad, sig, 21 - sPad, 20 + sPad); } if (rPad < 0 || sPad < 0) { log.finer("(finish ***) RFC 2536 DSA Sig:\n" + base64.toString(sig)); } else { log.finer("(finish) RFC 2536 DSA Sig:\n" + base64.toString(sig)); } return sig; } // Given one of the ECDSA algorithms determine the "length", which is the // length, in bytes, of both 'r' and 's' in the ECDSA signature. private static int ecdsaLength(int algorithm) throws SignatureException { switch (algorithm) { case DNSSEC.Algorithm.ECDSAP256SHA256: return 32; case DNSSEC.Algorithm.ECDSAP384SHA384: return 48; default: throw new SignatureException("Algorithm " + algorithm + " is not a supported ECDSA signature algorithm."); } } /** * Convert a JCE standard ECDSA signature (which is a ASN.1 encoding) into a * standard DNS signature. * * The format of the ASN.1 signature is * * ASN1_SEQ . seq_length . ASN1_INT . r_length . R . ANS1_INT . s_length . S * * where R and S may have a leading zero byte if without it the values would * be negative. * * The format of the DNSSEC signature is just R . S where R and S are both * exactly "length" bytes. * * @param signature The output of a ECDSA signature object. * @return signature data formatted for use in DNSSEC. * @throws SignatureException if the ASN.1 encoding appears to be corrupt. */ public static byte[] convertECDSASignature(int algorithm, byte[] signature) throws SignatureException { int expLength = ecdsaLength(algorithm); byte[] sig = new byte[expLength * 2]; if (signature[0] != ASN1_SEQ || signature[2] != ASN1_INT) { throw new SignatureException("Invalid ASN.1 signature format: expected SEQ, INT"); } int rLen = signature[3]; int rPos = 4; if (signature[rPos + rLen] != ASN1_INT) { throw new SignatureException("Invalid ASN.1 signature format: expected SEQ, INT, INT"); } int sPos = rPos + rLen + 2; int sLen = signature[rPos + rLen + 1]; // Adjust for leading zeros on both R and S if (signature[rPos] == 0) { rPos++; rLen--; } if (signature[sPos] == 0) { sPos++; sLen--; } System.arraycopy(signature, rPos, sig, 0 + (expLength - rLen), rLen); System.arraycopy(signature, sPos, sig, expLength + (expLength - sLen), sLen); return sig; } /** * Convert a DNS standard ECDSA signature (defined in RFC 6605) into a JCE * standard ECDSA signature, which is encoded in ASN.1. * * The format of the ASN.1 signature is * * ASN1_SEQ . seq_length . ASN1_INT . r_length . R . ANS1_INT . s_length . S * * where R and S may have a leading zero byte if without it the values would * be negative. * * The format of the DNSSEC signature is just R . S where R and S are both * exactly "length" bytes. * * @param signature The binary signature data from an RRSIG record. * @return signature data that may be used in a JCE Signature object for * verification purposes. */ public static byte[] convertECDSASignature(byte[] signature) { byte rSrcPos; byte rSrcLen; byte rPad; byte sSrcPos; byte sSrcLen; byte sPad; byte len; rSrcLen = sSrcLen = (byte) (signature.length / 2); rSrcPos = 0; rPad = 0; sSrcPos = (byte) (rSrcPos + rSrcLen); sPad = 0; len = (byte) (6 + rSrcLen + sSrcLen); // leading zeroes are forbidden while (signature[rSrcPos] == 0 && rSrcLen > 0) { rSrcPos++; rSrcLen--; len--; } while (signature[sSrcPos] == 0 && sSrcLen > 0) { sSrcPos++; sSrcLen--; len--; } // except when they are mandatory if (rSrcLen > 0 && signature[rSrcPos] < 0) { rPad = 1; len++; } if (sSrcLen > 0 && signature[sSrcPos] < 0) { sPad = 1; len++; } byte[] sig = new byte[len]; byte pos = 0; sig[pos++] = ASN1_SEQ; sig[pos++] = (byte) (len - 2); sig[pos++] = ASN1_INT; sig[pos++] = (byte) (rSrcLen + rPad); pos += rPad; System.arraycopy(signature, rSrcPos, sig, pos, rSrcLen); pos += rSrcLen; sig[pos++] = ASN1_INT; sig[pos++] = (byte) (sSrcLen + sPad); pos += sPad; System.arraycopy(signature, sSrcPos, sig, pos, sSrcLen); return sig; } /** * This is a convenience routine to help us classify records/RRsets. * * It characterizes a record/RRset as one of the following classes:
*
* *
NORMAL
*
This record/set is properly within the zone an subject to all NXT and * SIG processing.
* *
DELEGATION
*
This is a zone delegation point (or cut). It is used in NXT processing * but is not signed.
* *
GLUE
*
This is a glue record and therefore not properly within the zone. It is * not included in NXT or SIG processing. Normally glue records are A records, * but this routine calls anything that is below a zone delegation glue.
* *
INVALID
*
This record doesn't even belong in the zone.
* *
*
* * This method must be called successively on records in the canonical name * ordering, and the caller must maintain the last_cut parameter. * * @param zonename the name of the zone that is being processed. * @param name the name of the record/set under consideration. * @param type the type of the record/set under consideration. * @param lastCut the name of the last DELEGATION record/set that was * encountered while iterating over the zone in canonical * order. */ public static int recordSecType(Name zonename, Name name, int type, Name lastCut, Name lastDname) { // records not even in the zone itself are invalid. if (!name.subdomain(zonename)) return RR_INVALID; // all records a the zone apex are normal, by definition. if (name.equals(zonename)) return RR_NORMAL; if (lastCut != null && name.subdomain(lastCut)) { // if we are at the same level as a delegation point, but not one of a set of // types allowed at // a delegation point (NS, DS, NSEC), this is glue. if (name.equals(lastCut)) { if (type != Type.NS && type != Type.DS && type != Type.NXT && type != Type.NSEC) { return RR_GLUE; } } // if we are below the delegation point, this is glue. else { return RR_GLUE; } } // if we are below a DNAME, then the RR is invalid. if (lastDname != null && name.subdomain(lastDname) && name.labels() > lastDname.labels()) { return RR_INVALID; } // since we are not at zone level, any NS records are delegations if (type == Type.NS) return RR_DELEGATION; // and everything else is normal return RR_NORMAL; } /** * Given a canonical ordered list of records from a single zone, order the raw * records into a list of RRsets. * * @param records * a list of {@link org.xbill.DNS.Record} objects, in DNSSEC * canonical order. * @return a List of {@link org.xbill.DNS.RRset} objects. */ public static List assembleIntoRRsets(List records) { RRset rrset = new RRset(); ArrayList rrsets = new ArrayList<>(); for (Record r : records) { // First record if (rrset.size() == 0) { rrset.addRR(r); continue; } // Current record is part of the current RRset. if (rrset.getName().equals(r.getName()) && rrset.getDClass() == r.getDClass() && ((r.getType() == Type.RRSIG && rrset.getType() == ((RRSIGRecord) r).getTypeCovered()) || rrset.getType() == r.getType())) { rrset.addRR(r); continue; } // otherwise, we have completed the RRset rrsets.add(rrset); // set up for the next set. rrset = new RRset(); rrset.addRR(r); } // add the last rrset. rrsets.add(rrset); return rrsets; } /** * A little private class to hold information about a given node. */ private static class NodeInfo { public Name name; public int type; public long ttl; public int dclass; public Set typemap; public boolean isSecureNode; // opt-in support. public boolean hasOptInSpan; // opt-in support. public int nsecIndex; public NodeInfo(Record r, int nodeType) { this.name = r.getName(); this.type = nodeType; this.ttl = r.getTTL(); this.dclass = r.getDClass(); this.typemap = new HashSet<>(); this.isSecureNode = false; this.hasOptInSpan = false; addType(r.getType()); } public void addType(int type) { this.typemap.add(Integer.valueOf(type)); // Opt-In support. if (type != Type.NS && type != Type.NSEC && type != Type.RRSIG && type != Type.NSEC3) { isSecureNode = true; } } public boolean hasType(int type) { return this.typemap.contains(type); } public String toString() { StringBuilder sb = new StringBuilder(name.toString()); if (isSecureNode) sb.append("(S)"); if (hasOptInSpan) sb.append("(O)"); return sb.toString(); } public int[] getTypes() { Object[] a = typemap.toArray(); int[] res = new int[a.length]; for (int i = 0; i < a.length; i++) { res[i] = ((Integer) a[i]).intValue(); } return res; } } /** * Given a canonical (by name) ordered list of records in a zone, generate the * NSEC records in place. * * Note that the list that the records are stored in must support the * listIterator.add() operation. * * @param zonename the name of the zone (used to distinguish between zone apex * NS RRsets and delegations). * @param records a list of {@link org.xbill.DNS.Record} objects in DNSSEC * canonical order. */ public static void generateNSECRecords(Name zonename, List records) { // This works by iterating over a known sorted list of records. NodeInfo lastNode = null; NodeInfo currentNode = null; Name lastCut = null; Name lastDname = null; int backup; long nsecTTL = 0; // First find the SOA record -- it should be near the beginning -- and get // the soa minimum for (Record r : records) { if (r.getType() == Type.SOA) { SOARecord soa = (SOARecord) r; nsecTTL = Math.min(soa.getMinimum(), soa.getTTL()); break; } } if (nsecTTL == 0) { throw new IllegalArgumentException("Zone did not contain a SOA record"); } for (ListIterator i = records.listIterator(); i.hasNext();) { Record r = i.next(); Name rName = r.getName(); int rType = r.getType(); int rSecType = recordSecType(zonename, rName, rType, lastCut, lastDname); // skip irrelevant records if (rSecType == RR_INVALID || rSecType == RR_GLUE) continue; // note our last delegation point so we can recognize glue. if (rSecType == RR_DELEGATION) lastCut = rName; // if this is a DNAME, note it so we can recognize junk if (rType == Type.DNAME) lastDname = rName; // first node -- initialize if (currentNode == null) { currentNode = new NodeInfo(r, rSecType); currentNode.addType(Type.RRSIG); currentNode.addType(Type.NSEC); continue; } // record name hasn't changed, so we are still on the same node. if (rName.equals(currentNode.name)) { currentNode.addType(rType); continue; } if (lastNode != null) { NSECRecord nsec = new NSECRecord(lastNode.name, lastNode.dclass, nsecTTL, currentNode.name, lastNode.getTypes()); // Note: we have to add this through the iterator, otherwise // the next access via the iterator will generate a // ConcurrencyModificationException. backup = i.nextIndex() - lastNode.nsecIndex; for (int j = 0; j < backup; j++) i.previous(); i.add(nsec); for (int j = 0; j < backup; j++) i.next(); log.finer("Generated: " + nsec); } lastNode = currentNode; currentNode.nsecIndex = i.previousIndex(); currentNode = new NodeInfo(r, rSecType); currentNode.addType(Type.RRSIG); currentNode.addType(Type.NSEC); } // Generate next to last NSEC if (lastNode != null) { NSECRecord nsec = new NSECRecord(lastNode.name, lastNode.dclass, nsecTTL, currentNode.name, lastNode.getTypes()); records.add(lastNode.nsecIndex - 1, nsec); log.finer("Generated: " + nsec); } // Generate last NSEC NSECRecord nsec = new NSECRecord(currentNode.name, currentNode.dclass, nsecTTL, zonename, currentNode.getTypes()); records.add(nsec); log.finer("Generated: " + nsec); } /** * Given a canonical (by name) ordered list of records in a zone, generate the * NSEC3 records in place. * * Note that the list that the records are stored in must support the * listIterator.add() operation. * * @param zonename the name of the zone (used to distinguish between zone * apex NS RRsets and delegations). * @param records a list of {@link org.xbill.DNS.Record} objects in * DNSSEC canonical order. * @param salt The NSEC3 salt to use (may be null or empty for no * salt). * @param iterations The number of hash iterations to use. * @param nsec3paramTTL The TTL to use for the generated NSEC3PARAM records * (NSEC3 records will use the SOA minimum) * @throws NoSuchAlgorithmException */ public static void generateNSEC3Records(Name zonename, List records, byte[] salt, int iterations, long nsec3paramTTL) throws NoSuchAlgorithmException { List protoNSEC3s = new ArrayList<>(); NodeInfo currentNode = null; NodeInfo lastNode = null; // For detecting glue. Name lastCut = null; // For detecting junk below a DNAME Name lastDname = null; long nsec3TTL = 0; for (Record r : records) { Name rName = r.getName(); int rType = r.getType(); // Classify this record so we know if we can skip it. int rSecType = recordSecType(zonename, rName, rType, lastCut, lastDname); // skip irrelevant records if (rSecType == RR_INVALID || rSecType == RR_GLUE) continue; // note our last delegation point so we can recognize glue. if (rSecType == RR_DELEGATION) lastCut = rName; // note our last DNAME point, so we can recognize junk. if (rType == Type.DNAME) lastDname = rName; if (rType == Type.SOA) { SOARecord soa = (SOARecord) r; nsec3TTL = Math.min(soa.getMinimum(), soa.getTTL()); if (nsec3paramTTL < 0) { nsec3paramTTL = nsec3TTL; } } // For the first iteration, we create our current node. if (currentNode == null) { currentNode = new NodeInfo(r, rSecType); continue; } // If we are at the same name, we are on the same node. if (rName.equals(currentNode.name)) { currentNode.addType(rType); continue; } // At this point, r represents the start of a new node. // So we move current_node to last_node and generate a new current node. // But first, we need to do something with the last node. generateNSEC3ForNode(lastNode, zonename, salt, iterations, false, protoNSEC3s); lastNode = currentNode; currentNode = new NodeInfo(r, rSecType); } // process last two nodes. generateNSEC3ForNode(lastNode, zonename, salt, iterations, false, protoNSEC3s); generateNSEC3ForNode(currentNode, zonename, salt, iterations, false, protoNSEC3s); List nsec3s = finishNSEC3s(protoNSEC3s, nsec3TTL); records.addAll(nsec3s); NSEC3PARAMRecord nsec3param = new NSEC3PARAMRecord(zonename, DClass.IN, nsec3paramTTL, NSEC3Record.SHA1_DIGEST_ID, (byte) 0, iterations, salt); records.add(nsec3param); } /** * Given a canonical (by name) ordered list of records in a zone, generate the * NSEC3 records in place using Opt-Out NSEC3 records. This means that * non-apex NS RRs (and glue below those delegations) will, by default, not be * included in the NSEC3 chain. * * Note that the list that the records are stored in must support the * listIterator.add() operation. * * @param zonename the name of the zone (used to distinguish between zone * apex NS RRsets and delegations). * @param records a list of {@link org.xbill.DNS.Record} objects in * DNSSEC canonical order. * @param includedNames A list of {@link org.xbill.DNS.Name} objects. These * names will be included in the NSEC3 chain (if they * exist in the zone) regardless. * @param salt The NSEC3 salt to use (may be null or empty for no * salt). * @param iterations The number of hash iterations to use. * @param nsec3paramTTL The TTL to use for the generated NSEC3PARAM records * (NSEC3 records will use the SOA minimum) * @throws NoSuchAlgorithmException */ public static void generateOptOutNSEC3Records(Name zonename, List records, List includedNames, byte[] salt, int iterations, long nsec3paramTTL) throws NoSuchAlgorithmException { List protoNSEC3s = new ArrayList<>(); NodeInfo currentNode = null; NodeInfo lastNode = null; // For detecting glue. Name lastCut = null; // For detecting out-of-zone records below a DNAME Name lastDname = null; long nsec3TTL = 0; HashSet includeSet = null; if (includedNames != null) { includeSet = new HashSet<>(includedNames); } for (Record r : records) { Name rName = r.getName(); int rType = r.getType(); // Classify this record so we know if we can skip it. int rSecType = recordSecType(zonename, rName, rType, lastCut, lastDname); // skip irrelevant records if (rSecType == RR_INVALID || rSecType == RR_GLUE) continue; // note our last delegation point so we can recognize glue. if (rSecType == RR_DELEGATION) lastCut = rName; if (rType == Type.DNAME) lastDname = rName; if (rType == Type.SOA) { SOARecord soa = (SOARecord) r; nsec3TTL = Math.min(soa.getMinimum(), soa.getTTL()); if (nsec3paramTTL < 0) { nsec3paramTTL = nsec3TTL; } } // For the first iteration, we create our current node. if (currentNode == null) { currentNode = new NodeInfo(r, rSecType); continue; } // If we are at the same name, we are on the same node. if (rName.equals(currentNode.name)) { currentNode.addType(rType); continue; } if (includeSet != null && includeSet.contains(currentNode.name)) { currentNode.isSecureNode = true; } // At this point, r represents the start of a new node. // So we move current_node to last_node and generate a new current node. // But first, we need to do something with the last node. generateNSEC3ForNode(lastNode, zonename, salt, iterations, true, protoNSEC3s); if (currentNode.isSecureNode) { lastNode = currentNode; } else { lastNode.hasOptInSpan = true; } currentNode = new NodeInfo(r, rSecType); } // process last two nodes. generateNSEC3ForNode(lastNode, zonename, salt, iterations, true, protoNSEC3s); generateNSEC3ForNode(currentNode, zonename, salt, iterations, true, protoNSEC3s); List nsec3s = finishNSEC3s(protoNSEC3s, nsec3TTL); records.addAll(nsec3s); NSEC3PARAMRecord nsec3param = new NSEC3PARAMRecord(zonename, DClass.IN, nsec3paramTTL, NSEC3Record.SHA1_DIGEST_ID, (byte) 0, iterations, salt); records.add(nsec3param); } /** * For a given node (representing all of the RRsets at a given name), generate * all of the necessary NSEC3 records for it. That is, generate the NSEC3 for * the node itself, and for any potential empty non-terminals. * * @param node The node in question. * @param zonename The zonename. * @param salt The salt to use for the NSEC3 RRs * @param iterations The iterations to use for the NSEC3 RRs. * @param optIn If true, the NSEC3 will have the Opt-Out flag set. * @param nsec3s The current list of NSEC3s -- this will be updated. * @throws NoSuchAlgorithmException */ private static void generateNSEC3ForNode(NodeInfo node, Name zonename, byte[] salt, int iterations, boolean optIn, List nsec3s) throws NoSuchAlgorithmException { if (node == null) return; if (optIn && !node.isSecureNode) return; // Add our default types. if (node.type == RR_NORMAL || (node.type == RR_DELEGATION && node.hasType(Type.DS))) { node.addType(Type.RRSIG); } if (node.name.equals(zonename)) node.addType(Type.NSEC3PARAM); // Check for ENTs -- note this will generate duplicate ENTs because it // doesn't use any context. int ldiff = node.name.labels() - zonename.labels(); for (int i = 1; i < ldiff; i++) { Name n = new Name(node.name, i); log.fine("Generating ENT NSEC3 for " + n); ProtoNSEC3 nsec3 = generateNSEC3(n, zonename, node.ttl, salt, iterations, optIn, null); nsec3s.add(nsec3); } ProtoNSEC3 nsec3 = generateNSEC3(node.name, zonename, node.ttl, salt, iterations, optIn, node.getTypes()); nsec3s.add(nsec3); } /** * Create a "prototype" NSEC3 record. Basically, a mutable NSEC3 record. * * @param name The original ownername to use. * @param zonename The zonename to use. * @param ttl The TTL to use. * @param salt The salt to use. * @param iterations The number of hash iterations to use. * @param optIn The value of the Opt-Out flag. * @param types The typecodes present at this name. * @return A mutable NSEC3 record. * * @throws NoSuchAlgorithmException */ private static ProtoNSEC3 generateNSEC3(Name name, Name zonename, long ttl, byte[] salt, int iterations, boolean optIn, int[] types) throws NoSuchAlgorithmException { byte[] hash = nsec3hash(name, NSEC3Record.SHA1_DIGEST_ID, iterations, salt); byte flags = (byte) (optIn ? 0x01 : 0x00); ProtoNSEC3 r = new ProtoNSEC3(hash, name, zonename, DClass.IN, ttl, NSEC3Record.SHA1_DIGEST_ID, flags, iterations, salt, null, types); log.finer("Generated: " + r); return r; } /** * Given a list of {@link ProtoNSEC3} object (mutable NSEC3 RRs), convert the * list into the set of actual {@link org.xbill.DNS.NSEC3Record} objects. This * will remove duplicates and finalize the records. * * @param nsec3s The list of ProtoNSEC3 objects * @param ttl The TTL to assign to the finished NSEC3 records. In general, * this should match the SOA minimum value for the zone. * @return The list of {@link org.xbill.DNS.NSEC3Record} objects. */ private static List finishNSEC3s(List nsec3s, long ttl) { if (nsec3s == null) return new ArrayList<>(); Collections.sort(nsec3s, new ProtoNSEC3.Comparator()); ProtoNSEC3 prevNSEC3 = null; ProtoNSEC3 curNSEC3 = null; byte[] firstNSEC3Hash = null; for (ListIterator i = nsec3s.listIterator(); i.hasNext();) { curNSEC3 = i.next(); // check to see if cur is a duplicate (by name) if (prevNSEC3 != null && Arrays.equals(prevNSEC3.getOwner(), curNSEC3.getOwner())) { log.fine("found duplicate NSEC3 (by name) -- merging type maps: " + prevNSEC3.getTypemap() + " and " + curNSEC3.getTypemap()); i.remove(); prevNSEC3.mergeTypes(curNSEC3.getTypemap()); log.fine("merged type map: " + prevNSEC3.getTypemap()); continue; } byte[] next = curNSEC3.getOwner(); if (prevNSEC3 == null) { prevNSEC3 = curNSEC3; firstNSEC3Hash = next; continue; } prevNSEC3.setNext(next); prevNSEC3 = curNSEC3; } // Handle last NSEC3. if (prevNSEC3.getNext() == null) { // if prev_nsec3's next field hasn't been set, then it is the last // record (i.e., all remaining records were duplicates.) prevNSEC3.setNext(firstNSEC3Hash); } else { // otherwise, cur_nsec3 is the last record. curNSEC3.setNext(firstNSEC3Hash); } // Convert our ProtoNSEC3s to actual (immutable) NSEC3Record objects. List res = new ArrayList<>(nsec3s.size()); for (ProtoNSEC3 p : nsec3s) { p.setTTL(ttl); res.add(p.getNSEC3Record()); } return res; } /** * Given a canonical (by name) ordered list of records in a zone, generate the * NSEC records in place. * * Note that the list that the records are stored in must support the * listIterator.add operation. * * @param zonename the name of the zone apex, used to distinguish * between authoritative and delegation NS RRsets. * @param records a list of {@link org.xbill.DNS.Record}s in DNSSEC * canonical order. * @param includeNames a list of names that should be in the NXT chain * regardless. This may be null. * @param beConservative if true, then Opt-In NXTs will only be generated * where there is actually a span of insecure * delegations. */ public static void generateOptInNSECRecords(Name zonename, List records, List includeNames, boolean beConservative) { // This works by iterating over a known sorted list of records. NodeInfo lastNode = null; NodeInfo currentNode = null; Name lastCut = null; Name lastDname = null; int backup; HashSet includeSet = null; if (includeNames != null) { includeSet = new HashSet<>(includeNames); } for (ListIterator i = records.listIterator(); i.hasNext();) { Record r = i.next(); Name rName = r.getName(); int rType = r.getType(); int rSecType = recordSecType(zonename, rName, rType, lastCut, lastDname); // skip irrelevant records if (rSecType == RR_INVALID || rSecType == RR_GLUE) continue; // note our last delegation point so we can recognize glue. if (rSecType == RR_DELEGATION) lastCut = rName; if (rType == Type.DNAME) lastDname = rName; // first node -- initialize if (currentNode == null) { currentNode = new NodeInfo(r, rSecType); currentNode.addType(Type.RRSIG); continue; } // record name hasn't changed, so we are still on the same node. if (rName.equals(currentNode.name)) { currentNode.addType(rType); continue; } // If the name is in the set of included names, mark it as // secure. if (includeSet != null && includeSet.contains(currentNode.name)) { currentNode.isSecureNode = true; } if (lastNode != null && currentNode.isSecureNode) { // generate a NSEC record. if (beConservative && !lastNode.hasOptInSpan) { lastNode.addType(Type.NSEC); } NSECRecord nsec = new NSECRecord(lastNode.name, lastNode.dclass, lastNode.ttl, currentNode.name, lastNode.getTypes()); // Note: we have to add this through the iterator, otherwise // the next access via the iterator will generate a // ConcurrencyModificationException. backup = i.nextIndex() - lastNode.nsecIndex; for (int j = 0; j < backup; j++) i.previous(); i.add(nsec); for (int j = 0; j < backup; j++) i.next(); log.finer("Generated: " + nsec); } if (currentNode.isSecureNode) { lastNode = currentNode; } else if (lastNode != null) { // last_node does not change -- last_node is essentially the // last *secure* node, and current_node is not secure. // However, we need to note the passing of the insecure node. lastNode.hasOptInSpan = true; } currentNode.nsecIndex = i.previousIndex(); currentNode = new NodeInfo(r, rSecType); currentNode.addType(Type.RRSIG); } // Generate next to last NSEC if (lastNode != null && currentNode.isSecureNode) { // generate a NSEC record. if (beConservative && !lastNode.hasOptInSpan) { lastNode.addType(Type.NSEC); } NSECRecord nsec = new NSECRecord(lastNode.name, lastNode.dclass, lastNode.ttl, currentNode.name, lastNode.getTypes()); records.add(lastNode.nsecIndex - 1, nsec); log.finer("Generated: " + nsec); } // Generate last NSEC NSECRecord nsec; if (currentNode.isSecureNode) { if (beConservative) { currentNode.addType(Type.NSEC); } nsec = new NSECRecord(currentNode.name, currentNode.dclass, currentNode.ttl, zonename, currentNode.getTypes()); // we can just tack this on the end as we are working on the // last node. records.add(nsec); } else { nsec = new NSECRecord(lastNode.name, lastNode.dclass, lastNode.ttl, zonename, lastNode.getTypes()); // We need to tack this on after the last secure node, not the // end of the whole list. records.add(lastNode.nsecIndex, nsec); } log.finer("Generated: " + nsec); } /** * Given a zone with DNSKEY records at delegation points, convert those KEY * records into their corresponding DS records in place. * * @param zonename the name of the zone, used to reliably distinguish the * zone apex from other records. * @param records a list of {@link org.xbill.DNS.Record} objects. * @param digestAlg The digest algorithm to use. */ public static void generateDSRecords(Name zonename, List records, int digestAlg) { for (ListIterator i = records.listIterator(); i.hasNext();) { Record r = i.next(); if (r == null) continue; // this should never be true. Name rName = r.getName(); if (rName == null) continue; // this should never be true. // Convert non-zone level KEY records into DS records. if (r.getType() == Type.DNSKEY && !rName.equals(zonename)) { DSRecord ds = calculateDSRecord((DNSKEYRecord) r, digestAlg, r.getTTL()); i.set(ds); } } } /** * Given a zone, remove all records that are generated. * * @param zonename the name of the zone. * @param records a list of {@link org.xbill.DNS.Record} objects. */ public static void removeGeneratedRecords(Name zonename, List records) { for (Iterator i = records.iterator(); i.hasNext();) { Record r = i.next(); if (r.getType() == Type.RRSIG || r.getType() == Type.NSEC || r.getType() == Type.NSEC3 || r.getType() == Type.NSEC3PARAM) { i.remove(); } } } /** * Remove duplicate records from a list of records. This routine presumes the * list of records is in a canonical sorted order, at least on name and RR * type. * * @param records a list of {@link org.xbill.DNS.Record} object, in sorted * order. */ public static void removeDuplicateRecords(List records) { Record lastrec = null; for (Iterator i = records.iterator(); i.hasNext();) { Record r = i.next(); if (lastrec == null) { lastrec = r; continue; } if (lastrec.equals(r)) { i.remove(); continue; } lastrec = r; } } /** * Given a DNSKEY record, generate the DS record from it. * * @param keyrec the KEY record in question. * @param digestAlg The digest algorithm (SHA-1, SHA-256, etc.). * @param ttl the desired TTL for the generated DS record. If zero, or * negative, the original KEY RR's TTL will be used. * @return the corresponding {@link org.xbill.DNS.DSRecord} */ public static DSRecord calculateDSRecord(DNSKEYRecord keyrec, int digestAlg, long ttl) { if (keyrec == null) return null; if (ttl <= 0) ttl = keyrec.getTTL(); DNSOutput os = new DNSOutput(); os.writeByteArray(keyrec.getName().toWireCanonical()); os.writeByteArray(keyrec.rdataToWireCanonical()); try { byte[] digest; MessageDigest md; switch (digestAlg) { case DNSSEC.Digest.SHA1: md = MessageDigest.getInstance("SHA"); digest = md.digest(os.toByteArray()); break; case DNSSEC.Digest.SHA256: md = MessageDigest.getInstance("SHA-256"); digest = md.digest(os.toByteArray()); break; default: throw new IllegalArgumentException("Unknown digest id: " + digestAlg); } return new DSRecord(keyrec.getName(), keyrec.getDClass(), ttl, keyrec.getFootprint(), keyrec.getAlgorithm(), digestAlg, digest); } catch (NoSuchAlgorithmException e) { log.severe(e.toString()); return null; } } /** * Calculate an NSEC3 hash based on a DNS name and NSEC3 hash parameters. * * @param n The name to hash. * @param hashAlgorithm The hash algorithm to use. * @param iterations The number of iterations to do. * @param salt The salt to use. * @return The calculated hash as a byte array. * @throws NoSuchAlgorithmException If the hash algorithm is unrecognized. */ public static byte[] nsec3hash(Name n, int hashAlgorithm, int iterations, byte[] salt) throws NoSuchAlgorithmException { MessageDigest md; if (hashAlgorithm != NSEC3Record.SHA1_DIGEST_ID) { throw new NoSuchAlgorithmException("Unknown NSEC3 algorithm identifier: " + hashAlgorithm); } md = MessageDigest.getInstance("SHA1"); // Construct our wire form. byte[] wireName = n.toWireCanonical(); byte[] res = wireName; // for the first iteration. for (int i = 0; i <= iterations; i++) { // Concatenate the salt, if it exists. if (salt != null) { byte[] concat = new byte[res.length + salt.length]; System.arraycopy(res, 0, concat, 0, res.length); System.arraycopy(salt, 0, concat, res.length, salt.length); res = concat; } res = md.digest(res); } return res; } }