Elliptic curve support.
Improve usage, unknown algorithm error handling in jdnssec-keygen Use the bouncycastle crypto provider for ECCGOST if available
This commit is contained in:
parent
6bbcf38fe1
commit
f170bd170a
18
ChangeLog
18
ChangeLog
@ -1,3 +1,21 @@
|
||||
2016-12-05 David Blacka <davidb@verisign.com>
|
||||
|
||||
* Add key generation, signing, verification support for elliptic
|
||||
curve algorithms: ECC-GOST (12), ECDSA P-256 (13) and ECDSA P-384 (15).
|
||||
|
||||
2016-08-22 David Blacka <davidb@verisign.com>
|
||||
|
||||
* Update internal dnsjava to 2.1.7-vrsn-1.
|
||||
|
||||
2014-04-22 David Blacka <davidb@verisign.com>
|
||||
|
||||
* ZoneFormat: Make -N also compute original ownernames for empty
|
||||
non-terminal NSEC3 records.
|
||||
|
||||
* ZoneVerifier: Improve the zone verifiers handling of "junk" in a
|
||||
zone (i.e., ignore resource records that aren't actually in the
|
||||
zone itself.)
|
||||
|
||||
2012-07-16 David Blacka <davidb@verisign.com>
|
||||
|
||||
* Released version 0.12.
|
||||
|
@ -44,8 +44,6 @@
|
||||
<javac srcdir="${build.src}"
|
||||
destdir="${build.dest}"
|
||||
classpathref="project.classpath"
|
||||
source="1.5"
|
||||
target="1.5"
|
||||
deprecation="true"
|
||||
includeantruntime="false"
|
||||
includes="com/verisignlabs/dnssec/" />
|
||||
@ -70,7 +68,7 @@
|
||||
verbose="true" author="true"
|
||||
windowtitle="jdnssec-tools-${version}"
|
||||
use="true">
|
||||
<link href="http://java.sun.com/j2se/1.4.2/docs/api/" />
|
||||
<link href="https://docs.oracle.com/javase/8/docs/api/" />
|
||||
<link href="http://www.xbill.org/dnsjava/doc/" />
|
||||
</javadoc>
|
||||
</target>
|
||||
@ -172,4 +170,3 @@
|
||||
</target>
|
||||
|
||||
</project>
|
||||
|
||||
|
@ -74,17 +74,18 @@ public class KeyGen extends CLBase
|
||||
OptionBuilder.withDescription("ZONE | OTHER (default ZONE)");
|
||||
opts.addOption(OptionBuilder.create('n'));
|
||||
|
||||
String[] algStrings = DnsKeyAlgorithm.getInstance().supportedAlgMnemonics();
|
||||
OptionBuilder.hasArg();
|
||||
OptionBuilder.withArgName("algorithm");
|
||||
OptionBuilder.withDescription("RSA | RSASHA1 | RSAMD5 | DH | DSA "
|
||||
+ "| RSA-NSEC3-SHA1 | DSA-NSEC3-SHA1 "
|
||||
+ "| RSASHA256 | RSASHA512 | alias, RSASHA1 is default.");
|
||||
OptionBuilder.withDescription(String.join(" | ", algStrings) +
|
||||
" | alias, RSASHA256 is default.");
|
||||
opts.addOption(OptionBuilder.create('a'));
|
||||
|
||||
OptionBuilder.hasArg();
|
||||
OptionBuilder.withArgName("size");
|
||||
OptionBuilder.withDescription("key size, in bits. (default = 1024)\n"
|
||||
+ "RSA: [512..4096]\n" + "DSA: [512..1024]\n" + "DH: [128..4096]");
|
||||
OptionBuilder.withDescription("key size, in bits. default is 1024. "
|
||||
+ "RSA: [512..4096], DSA: [512..1024], DH: [128..4096], "
|
||||
+ "ECDSA: ignored");
|
||||
opts.addOption(OptionBuilder.create('b'));
|
||||
|
||||
OptionBuilder.hasArg();
|
||||
@ -98,7 +99,6 @@ public class KeyGen extends CLBase
|
||||
OptionBuilder.withArgName("dir");
|
||||
OptionBuilder.withDescription("place generated key files in this " + "directory");
|
||||
opts.addOption(OptionBuilder.create('d'));
|
||||
opts.addOption(OptionBuilder.create('A'));
|
||||
}
|
||||
|
||||
protected void processOptions(CommandLine cli)
|
||||
@ -136,6 +136,11 @@ public class KeyGen extends CLBase
|
||||
if ((optstr = cli.getOptionValue('a')) != null)
|
||||
{
|
||||
algorithm = parseAlg(optstr);
|
||||
if (algorithm < 0)
|
||||
{
|
||||
System.err.println("DNSSEC algorithm " + optstr + " is not supported");
|
||||
usage();
|
||||
}
|
||||
}
|
||||
|
||||
if ((optstr = cli.getOptionValue('b')) != null)
|
||||
@ -166,7 +171,11 @@ public class KeyGen extends CLBase
|
||||
DnsKeyAlgorithm algs = DnsKeyAlgorithm.getInstance();
|
||||
|
||||
int alg = parseInt(s, -1);
|
||||
if (alg > 0) return alg;
|
||||
if (alg > 0)
|
||||
{
|
||||
if (algs.supportedAlgorithm(alg)) return alg;
|
||||
return -1;
|
||||
}
|
||||
|
||||
return algs.stringToAlgorithm(s);
|
||||
}
|
||||
|
@ -546,6 +546,7 @@ public class SignZone extends CLBase
|
||||
}
|
||||
}
|
||||
|
||||
br.close();
|
||||
if (res.size() == 0) return null;
|
||||
return res;
|
||||
}
|
||||
|
@ -29,13 +29,12 @@
|
||||
|
||||
package com.verisignlabs.dnssec.security;
|
||||
|
||||
import java.security.InvalidAlgorithmParameterException;
|
||||
import java.security.KeyPair;
|
||||
import java.security.KeyPairGenerator;
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
import java.security.Signature;
|
||||
import java.security.spec.RSAKeyGenParameterSpec;
|
||||
import java.math.BigInteger;
|
||||
import java.security.*;
|
||||
import java.security.spec.*;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashMap;
|
||||
import java.util.Set;
|
||||
import java.util.logging.Logger;
|
||||
|
||||
import org.xbill.DNS.DNSSEC;
|
||||
@ -56,28 +55,46 @@ import org.xbill.DNS.DNSSEC;
|
||||
public class DnsKeyAlgorithm
|
||||
{
|
||||
|
||||
// Our base algorithm numbers. This is a normalization of the DNSSEC
|
||||
// algorithms (which are really signature algorithms). Thus RSASHA1,
|
||||
// RSASHA256, etc. all boil down to 'RSA' here.
|
||||
public static final int UNKNOWN = -1;
|
||||
public static final int RSA = 1;
|
||||
public static final int DH = 2;
|
||||
public static final int DSA = 3;
|
||||
public static final int ECC_GOST = 4;
|
||||
public static final int ECDSA = 5;
|
||||
|
||||
private static class Entry
|
||||
private static class AlgEntry
|
||||
{
|
||||
public int dnssecAlgorithm;
|
||||
public String sigName;
|
||||
public int baseType;
|
||||
|
||||
public Entry(String sigName, int baseType)
|
||||
public AlgEntry(int algorithm, String sigName, int baseType)
|
||||
{
|
||||
this.dnssecAlgorithm = algorithm;
|
||||
this.sigName = sigName;
|
||||
this.baseType = baseType;
|
||||
}
|
||||
}
|
||||
|
||||
private static class ECAlgEntry extends AlgEntry
|
||||
{
|
||||
public ECParameterSpec ec_spec;
|
||||
|
||||
public ECAlgEntry(int algorithm, String sigName, int baseType, ECParameterSpec spec)
|
||||
{
|
||||
super(algorithm, sigName, baseType);
|
||||
this.ec_spec = spec;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* This is a mapping of algorithm identifier to Entry. The Entry contains the
|
||||
* data needed to map the algorithm to the various crypto implementations.
|
||||
*/
|
||||
private HashMap<Integer, Entry> mAlgorithmMap;
|
||||
private HashMap<Integer, AlgEntry> mAlgorithmMap;
|
||||
/**
|
||||
* This is a mapping of algorithm mnemonics to algorithm identifiers.
|
||||
*/
|
||||
@ -90,8 +107,12 @@ public class DnsKeyAlgorithm
|
||||
|
||||
/** This is a cached key pair generator for RSA keys. */
|
||||
private KeyPairGenerator mRSAKeyGenerator;
|
||||
/** This is a cache key pair generator for DSA keys. */
|
||||
/** This is a cached key pair generator for DSA keys. */
|
||||
private KeyPairGenerator mDSAKeyGenerator;
|
||||
/** This is a cached key pair generator for ECC GOST keys. */
|
||||
private KeyPairGenerator mECGOSTKeyGenerator;
|
||||
/** This is a cached key pair generator for ECDSA_P256 keys. */
|
||||
private KeyPairGenerator mECKeyGenerator;
|
||||
|
||||
private Logger log = Logger.getLogger(this.getClass().toString());
|
||||
|
||||
@ -100,21 +121,37 @@ public class DnsKeyAlgorithm
|
||||
|
||||
public DnsKeyAlgorithm()
|
||||
{
|
||||
mAlgorithmMap = new HashMap<Integer, Entry>();
|
||||
// Attempt to add the bouncycastle provider.
|
||||
// This is so we can use this provider if it is available, but not require
|
||||
// the user to add it as one of the java.security providers.
|
||||
try
|
||||
{
|
||||
Class<?> bc_provider_class = Class.forName("org.bouncycastle.jce.provider.BouncyCastleProvider");
|
||||
Provider bc_provider = (Provider) bc_provider_class.newInstance();
|
||||
Security.addProvider(bc_provider);
|
||||
}
|
||||
catch (ReflectiveOperationException e) { }
|
||||
|
||||
initialize();
|
||||
}
|
||||
|
||||
private void initialize()
|
||||
{
|
||||
mAlgorithmMap = new HashMap<Integer, AlgEntry>();
|
||||
mMnemonicToIdMap = new HashMap<String, Integer>();
|
||||
mIdToMnemonicMap = new HashMap<Integer, String>();
|
||||
|
||||
// Load the standard DNSSEC algorithms.
|
||||
addAlgorithm(DNSSEC.Algorithm.RSAMD5, new Entry("MD5withRSA", RSA));
|
||||
addAlgorithm(DNSSEC.Algorithm.RSAMD5, "MD5withRSA", RSA);
|
||||
addMnemonic("RSAMD5", DNSSEC.Algorithm.RSAMD5);
|
||||
|
||||
addAlgorithm(DNSSEC.Algorithm.DH, new Entry("", DH));
|
||||
addAlgorithm(DNSSEC.Algorithm.DH, "", DH);
|
||||
addMnemonic("DH", DNSSEC.Algorithm.DH);
|
||||
|
||||
addAlgorithm(DNSSEC.Algorithm.DSA, new Entry("SHA1withDSA", DSA));
|
||||
addAlgorithm(DNSSEC.Algorithm.DSA, "SHA1withDSA", DSA);
|
||||
addMnemonic("DSA", DNSSEC.Algorithm.DSA);
|
||||
|
||||
addAlgorithm(DNSSEC.Algorithm.RSASHA1, new Entry("SHA1withRSA", RSA));
|
||||
addAlgorithm(DNSSEC.Algorithm.RSASHA1, "SHA1withRSA", RSA);
|
||||
addMnemonic("RSASHA1", DNSSEC.Algorithm.RSASHA1);
|
||||
addMnemonic("RSA", DNSSEC.Algorithm.RSASHA1);
|
||||
|
||||
@ -126,22 +163,56 @@ public class DnsKeyAlgorithm
|
||||
addMnemonic("NSEC3RSASHA1", DNSSEC.Algorithm.RSA_NSEC3_SHA1);
|
||||
|
||||
// Algorithms added by RFC 5702.
|
||||
// NOTE: these algorithms aren't available in Java 1.4's sunprovider
|
||||
// implementation (but are in java 1.5's and later).
|
||||
addAlgorithm(8, new Entry("SHA256withRSA", RSA));
|
||||
addMnemonic("RSASHA256", 8);
|
||||
addAlgorithm(DNSSEC.Algorithm.RSASHA256, "SHA256withRSA", RSA);
|
||||
addMnemonic("RSASHA256", DNSSEC.Algorithm.RSASHA256);
|
||||
|
||||
addAlgorithm(10, new Entry("SHA512withRSA", RSA));
|
||||
addMnemonic("RSASHA512", 10);
|
||||
addAlgorithm(DNSSEC.Algorithm.RSASHA512, "SHA512withRSA", RSA);
|
||||
addMnemonic("RSASHA512", DNSSEC.Algorithm.RSASHA512);
|
||||
|
||||
// ECC-GOST is not supported by Java 1.8's Sun crypto provider. The
|
||||
// bouncycastle.org provider, however, does.
|
||||
// GostR3410-2001-CryptoPro-A is the named curve in the BC provider, but we
|
||||
// will get the parameters directly.
|
||||
addAlgorithm(DNSSEC.Algorithm.ECC_GOST, "GOST3411withECGOST3410", ECC_GOST, null);
|
||||
addMnemonic("ECCGOST", DNSSEC.Algorithm.ECC_GOST);
|
||||
addMnemonic("ECC-GOST", DNSSEC.Algorithm.ECC_GOST);
|
||||
|
||||
addAlgorithm(DNSSEC.Algorithm.ECDSAP256SHA256, "SHA256withECDSA", ECDSA, "secp256r1");
|
||||
addMnemonic("ECDSAP256SHA256", DNSSEC.Algorithm.ECDSAP256SHA256);
|
||||
addMnemonic("ECDSA-P256", DNSSEC.Algorithm.ECDSAP256SHA256);
|
||||
|
||||
addAlgorithm(DNSSEC.Algorithm.ECDSAP384SHA384, "SHA384withECDSA", ECDSA, "secp384r1");
|
||||
addMnemonic("ECDSAP384SHA384", DNSSEC.Algorithm.ECDSAP384SHA384);
|
||||
addMnemonic("ECDSA-P384", DNSSEC.Algorithm.ECDSAP384SHA384);
|
||||
}
|
||||
|
||||
private void addAlgorithm(int algorithm, Entry entry)
|
||||
private void addAlgorithm(int algorithm, String sigName, int baseType)
|
||||
{
|
||||
mAlgorithmMap.put(algorithm, new AlgEntry(algorithm, sigName, baseType));
|
||||
}
|
||||
|
||||
private void addAlgorithm(int algorithm, String sigName, int baseType, String curveName)
|
||||
{
|
||||
ECParameterSpec ec_spec = ECSpecFromAlgorithm(algorithm);
|
||||
if (ec_spec == null) ec_spec = ECSpecFromName(curveName);
|
||||
if (ec_spec == null) return;
|
||||
// Check to see if we can get a Signature object for this algorithm.
|
||||
try {
|
||||
Signature.getInstance(sigName);
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
// If not, do not add the algorithm.
|
||||
return;
|
||||
}
|
||||
|
||||
ECAlgEntry entry = new ECAlgEntry(algorithm, sigName, baseType, ec_spec);
|
||||
mAlgorithmMap.put(algorithm, entry);
|
||||
}
|
||||
|
||||
private void addMnemonic(String m, int alg)
|
||||
{
|
||||
// Do not add mnemonics for algorithms that ended up not actually being supported.
|
||||
if (!mAlgorithmMap.containsKey(alg)) return;
|
||||
|
||||
mMnemonicToIdMap.put(m.toUpperCase(), alg);
|
||||
if (!mIdToMnemonicMap.containsKey(alg))
|
||||
{
|
||||
@ -172,14 +243,77 @@ public class DnsKeyAlgorithm
|
||||
}
|
||||
}
|
||||
|
||||
private Entry getEntry(int alg)
|
||||
private AlgEntry getEntry(int alg)
|
||||
{
|
||||
return mAlgorithmMap.get(alg);
|
||||
}
|
||||
|
||||
// For curves where we don't (or can't) get the parameters from a standard
|
||||
// name, we can construct the parameters here. For now, we only do this for
|
||||
// the ECC-GOST curve.
|
||||
private ECParameterSpec ECSpecFromAlgorithm(int algorithm)
|
||||
{
|
||||
switch (algorithm)
|
||||
{
|
||||
case DNSSEC.Algorithm.ECC_GOST:
|
||||
{
|
||||
// From RFC 4357 Section 11.4
|
||||
BigInteger p = new BigInteger("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD97", 16);
|
||||
BigInteger a = new BigInteger("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD94", 16);
|
||||
BigInteger b = new BigInteger("A6", 16);
|
||||
BigInteger gx = new BigInteger("1", 16);
|
||||
BigInteger gy = new BigInteger("8D91E471E0989CDA27DF505A453F2B7635294F2DDF23E3B122ACC99C9E9F1E14", 16);
|
||||
BigInteger n = new BigInteger( "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6C611070995AD10045841B09B761B893", 16);
|
||||
|
||||
EllipticCurve curve = new EllipticCurve(new ECFieldFp(p), a, b);
|
||||
return new ECParameterSpec(curve, new ECPoint(gx, gy), n, 1);
|
||||
}
|
||||
default:
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
// Fetch the curve parameters from a named curve.
|
||||
private ECParameterSpec ECSpecFromName(String stdName)
|
||||
{
|
||||
try
|
||||
{
|
||||
AlgorithmParameters ap = AlgorithmParameters.getInstance("EC");
|
||||
ECGenParameterSpec ecg_spec = new ECGenParameterSpec(stdName);
|
||||
ap.init(ecg_spec);
|
||||
return ap.getParameterSpec(ECParameterSpec.class);
|
||||
}
|
||||
catch (NoSuchAlgorithmException e) {
|
||||
log.info("Elliptic Curve not supported by any crypto provider: " + e.getMessage());
|
||||
}
|
||||
catch (InvalidParameterSpecException e) {
|
||||
log.info("Elliptic Curve " + stdName + " not supported");
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
public String[] supportedAlgMnemonics()
|
||||
{
|
||||
Set<Integer> keyset = mAlgorithmMap.keySet();
|
||||
Integer[] algs = keyset.toArray(new Integer[keyset.size()]);
|
||||
Arrays.sort(algs);
|
||||
|
||||
String[] result = new String[algs.length];
|
||||
for (int i = 0; i < algs.length; i++)
|
||||
{
|
||||
result[i] = mIdToMnemonicMap.get(algs[i]);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
/**
|
||||
* Return a Signature object for the specified DNSSEC algorithm.
|
||||
* @param algorithm The DNSSEC algorithm (by number).
|
||||
* @return a Signature object.
|
||||
*/
|
||||
public Signature getSignature(int algorithm)
|
||||
{
|
||||
Entry entry = getEntry(algorithm);
|
||||
AlgEntry entry = getEntry(algorithm);
|
||||
if (entry == null) return null;
|
||||
|
||||
Signature s = null;
|
||||
@ -197,6 +331,62 @@ public class DnsKeyAlgorithm
|
||||
return s;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given one of the ECDSA algorithms (ECDSAP256SHA256, etc.) return
|
||||
* the elliptic curve parameters.
|
||||
*
|
||||
* @param algorithm
|
||||
* The DNSSEC algorithm number.
|
||||
* @return The calculated JCA ECParameterSpec for that DNSSEC algorithm, or
|
||||
* null if not a recognized/supported EC algorithm.
|
||||
*/
|
||||
public ECParameterSpec getEllipticCurveParams(int algorithm)
|
||||
{
|
||||
AlgEntry entry = getEntry(algorithm);
|
||||
if (entry == null) return null;
|
||||
if (!(entry instanceof ECAlgEntry)) return null;
|
||||
ECAlgEntry ec_entry = (ECAlgEntry) entry;
|
||||
|
||||
return ec_entry.ec_spec;
|
||||
}
|
||||
|
||||
/**
|
||||
* Translate a possible algorithm alias back to the original DNSSEC algorithm
|
||||
* number
|
||||
*
|
||||
* @param algorithm
|
||||
* a DNSSEC algorithm that may be an alias.
|
||||
* @return -1 if the algorithm isn't recognised, the orignal algorithm number
|
||||
* if it is.
|
||||
*/
|
||||
public int originalAlgorithm(int algorithm)
|
||||
{
|
||||
AlgEntry entry = getEntry(algorithm);
|
||||
if (entry == null) return -1;
|
||||
return entry.dnssecAlgorithm;
|
||||
}
|
||||
|
||||
/**
|
||||
* Test if a given algorithm is supported.
|
||||
*
|
||||
* @param algorithm The DNSSEC algorithm number.
|
||||
* @return true if the algorithm is a recognized and supported algorithm or alias.
|
||||
*/
|
||||
public boolean supportedAlgorithm(int algorithm)
|
||||
{
|
||||
if (mAlgorithmMap.containsKey(algorithm)) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given an algorithm mnemonic, convert the mnemonic to a DNSSEC algorithm
|
||||
* number.
|
||||
*
|
||||
* @param s
|
||||
* The mnemonic string. This is case-insensitive.
|
||||
* @return -1 if the mnemonic isn't recognized or supported, the algorithm
|
||||
* number if it is.
|
||||
*/
|
||||
public int stringToAlgorithm(String s)
|
||||
{
|
||||
Integer alg = mMnemonicToIdMap.get(s.toUpperCase());
|
||||
@ -204,6 +394,14 @@ public class DnsKeyAlgorithm
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a DNSSEC algorithm number, return the "preferred" mnemonic.
|
||||
*
|
||||
* @param algorithm
|
||||
* A DNSSEC algorithm number.
|
||||
* @return The preferred mnemonic string, or null if not supported or
|
||||
* recognized.
|
||||
*/
|
||||
public String algToString(int algorithm)
|
||||
{
|
||||
return mIdToMnemonicMap.get(algorithm);
|
||||
@ -211,26 +409,11 @@ public class DnsKeyAlgorithm
|
||||
|
||||
public int baseType(int algorithm)
|
||||
{
|
||||
Entry entry = getEntry(algorithm);
|
||||
AlgEntry entry = getEntry(algorithm);
|
||||
if (entry != null) return entry.baseType;
|
||||
return UNKNOWN;
|
||||
}
|
||||
|
||||
public int standardAlgorithm(int algorithm)
|
||||
{
|
||||
switch (baseType(algorithm))
|
||||
{
|
||||
case RSA:
|
||||
return DNSSEC.Algorithm.RSASHA1;
|
||||
case DSA:
|
||||
return DNSSEC.Algorithm.DSA;
|
||||
case DH:
|
||||
return DNSSEC.Algorithm.DH;
|
||||
default:
|
||||
return UNKNOWN;
|
||||
}
|
||||
}
|
||||
|
||||
public boolean isDSA(int algorithm)
|
||||
{
|
||||
return (baseType(algorithm) == DSA);
|
||||
@ -243,6 +426,7 @@ public class DnsKeyAlgorithm
|
||||
switch (baseType(algorithm))
|
||||
{
|
||||
case RSA:
|
||||
{
|
||||
if (mRSAKeyGenerator == null)
|
||||
{
|
||||
mRSAKeyGenerator = KeyPairGenerator.getInstance("RSA");
|
||||
@ -270,7 +454,9 @@ public class DnsKeyAlgorithm
|
||||
|
||||
pair = mRSAKeyGenerator.generateKeyPair();
|
||||
break;
|
||||
}
|
||||
case DSA:
|
||||
{
|
||||
if (mDSAKeyGenerator == null)
|
||||
{
|
||||
mDSAKeyGenerator = KeyPairGenerator.getInstance("DSA");
|
||||
@ -278,6 +464,49 @@ public class DnsKeyAlgorithm
|
||||
mDSAKeyGenerator.initialize(keysize);
|
||||
pair = mDSAKeyGenerator.generateKeyPair();
|
||||
break;
|
||||
}
|
||||
case ECC_GOST:
|
||||
{
|
||||
if (mECGOSTKeyGenerator == null)
|
||||
{
|
||||
mECGOSTKeyGenerator = KeyPairGenerator.getInstance("ECGOST3410");
|
||||
}
|
||||
|
||||
ECParameterSpec ec_spec = getEllipticCurveParams(algorithm);
|
||||
try
|
||||
{
|
||||
mECGOSTKeyGenerator.initialize(ec_spec);
|
||||
}
|
||||
catch (InvalidAlgorithmParameterException e)
|
||||
{
|
||||
// Fold the InvalidAlgorithmParameterException into our existing
|
||||
// thrown exception. Ugly, but requires less code change.
|
||||
throw new NoSuchAlgorithmException("invalid key parameter spec");
|
||||
}
|
||||
pair = mECGOSTKeyGenerator.generateKeyPair();
|
||||
break;
|
||||
}
|
||||
case ECDSA:
|
||||
{
|
||||
if (mECKeyGenerator == null)
|
||||
{
|
||||
mECKeyGenerator = KeyPairGenerator.getInstance("EC");
|
||||
}
|
||||
|
||||
ECParameterSpec ec_spec = getEllipticCurveParams(algorithm);
|
||||
try
|
||||
{
|
||||
mECKeyGenerator.initialize(ec_spec);
|
||||
}
|
||||
catch (InvalidAlgorithmParameterException e)
|
||||
{
|
||||
// Fold the InvalidAlgorithmParameterException into our existing
|
||||
// thrown exception. Ugly, but requires less code change.
|
||||
throw new NoSuchAlgorithmException("invalid key parameter spec");
|
||||
}
|
||||
pair = mECKeyGenerator.generateKeyPair();
|
||||
break;
|
||||
}
|
||||
default:
|
||||
throw new NoSuchAlgorithmException("Alg " + algorithm);
|
||||
}
|
||||
|
@ -27,15 +27,8 @@ import java.security.KeyFactory;
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
import java.security.PrivateKey;
|
||||
import java.security.PublicKey;
|
||||
import java.security.interfaces.DSAParams;
|
||||
import java.security.interfaces.DSAPrivateKey;
|
||||
import java.security.interfaces.DSAPublicKey;
|
||||
import java.security.interfaces.RSAPrivateCrtKey;
|
||||
import java.security.spec.DSAPrivateKeySpec;
|
||||
import java.security.spec.InvalidKeySpecException;
|
||||
import java.security.spec.KeySpec;
|
||||
import java.security.spec.PKCS8EncodedKeySpec;
|
||||
import java.security.spec.RSAPrivateCrtKeySpec;
|
||||
import java.security.interfaces.*;
|
||||
import java.security.spec.*;
|
||||
import java.util.StringTokenizer;
|
||||
|
||||
import javax.crypto.interfaces.DHPrivateKey;
|
||||
@ -44,6 +37,7 @@ import javax.crypto.spec.DHParameterSpec;
|
||||
import javax.crypto.spec.DHPrivateKeySpec;
|
||||
|
||||
import org.xbill.DNS.DNSKEYRecord;
|
||||
import org.xbill.DNS.DNSSEC;
|
||||
import org.xbill.DNS.DNSSEC.DNSSECException;
|
||||
import org.xbill.DNS.Name;
|
||||
import org.xbill.DNS.utils.base64;
|
||||
@ -61,9 +55,12 @@ public class DnsKeyConverter
|
||||
private KeyFactory mRSAKeyFactory;
|
||||
private KeyFactory mDSAKeyFactory;
|
||||
private KeyFactory mDHKeyFactory;
|
||||
private KeyFactory mECKeyFactory;
|
||||
private DnsKeyAlgorithm mAlgorithms;
|
||||
|
||||
public DnsKeyConverter()
|
||||
{
|
||||
mAlgorithms = DnsKeyAlgorithm.getInstance();
|
||||
}
|
||||
|
||||
/**
|
||||
@ -76,23 +73,19 @@ public class DnsKeyConverter
|
||||
{
|
||||
if (pKeyRecord.getKey() == null) return null;
|
||||
|
||||
// For now, instead of re-implementing parseRecord (or adding this stuff
|
||||
// to DNSjava), we will just translate the algorithm back to a standard
|
||||
// algorithm. Note that this will unnecessarily convert RSAMD5 to RSASHA1.
|
||||
// Because we have arbitrarily aliased algorithms, we need to possibly
|
||||
// translate the aliased algorithm back to the actual algorithm.
|
||||
|
||||
DnsKeyAlgorithm algs = DnsKeyAlgorithm.getInstance();
|
||||
int standard_alg = algs.standardAlgorithm(pKeyRecord.getAlgorithm());
|
||||
int originalAlgorithm = mAlgorithms.originalAlgorithm(pKeyRecord.getAlgorithm());
|
||||
|
||||
if (standard_alg <= 0)
|
||||
throw new NoSuchAlgorithmException("DNSKEY algorithm "
|
||||
if (originalAlgorithm <= 0) throw new NoSuchAlgorithmException("DNSKEY algorithm "
|
||||
+ pKeyRecord.getAlgorithm() + " is unrecognized");
|
||||
|
||||
if (pKeyRecord.getAlgorithm() != standard_alg)
|
||||
if (pKeyRecord.getAlgorithm() != originalAlgorithm)
|
||||
{
|
||||
pKeyRecord = new DNSKEYRecord(pKeyRecord.getName(),
|
||||
pKeyRecord.getDClass(),
|
||||
pKeyRecord = new DNSKEYRecord(pKeyRecord.getName(), pKeyRecord.getDClass(),
|
||||
pKeyRecord.getTTL(), pKeyRecord.getFlags(),
|
||||
pKeyRecord.getProtocol(), standard_alg,
|
||||
pKeyRecord.getProtocol(), originalAlgorithm,
|
||||
pKeyRecord.getKey());
|
||||
}
|
||||
|
||||
@ -132,11 +125,9 @@ public class DnsKeyConverter
|
||||
public PrivateKey convertEncodedPrivateKey(byte[] key, int algorithm)
|
||||
{
|
||||
PKCS8EncodedKeySpec spec = new PKCS8EncodedKeySpec(key);
|
||||
DnsKeyAlgorithm algs = DnsKeyAlgorithm.getInstance();
|
||||
|
||||
try
|
||||
{
|
||||
switch (algs.baseType(algorithm))
|
||||
switch (mAlgorithms.baseType(algorithm))
|
||||
{
|
||||
case DnsKeyAlgorithm.RSA:
|
||||
return mRSAKeyFactory.generatePrivate(spec);
|
||||
@ -146,12 +137,17 @@ public class DnsKeyConverter
|
||||
}
|
||||
catch (GeneralSecurityException e)
|
||||
{
|
||||
e.printStackTrace();
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
private int parseInt(String s, int def)
|
||||
/**
|
||||
* A simple wrapper for parsing integers; parse failures result in the
|
||||
* supplied default.
|
||||
*/
|
||||
private static int parseInt(String s, int def)
|
||||
{
|
||||
try
|
||||
{
|
||||
@ -195,9 +191,8 @@ public class DnsKeyConverter
|
||||
String[] toks = val.split("\\s", 2);
|
||||
val = toks[0];
|
||||
int alg = parseInt(val, -1);
|
||||
DnsKeyAlgorithm algs = DnsKeyAlgorithm.getInstance();
|
||||
|
||||
switch (algs.baseType(alg))
|
||||
switch (mAlgorithms.baseType(alg))
|
||||
{
|
||||
case DnsKeyAlgorithm.RSA:
|
||||
return parsePrivateRSA(lines);
|
||||
@ -205,6 +200,10 @@ public class DnsKeyConverter
|
||||
return parsePrivateDSA(lines);
|
||||
case DnsKeyAlgorithm.DH:
|
||||
return parsePrivateDH(lines);
|
||||
case DnsKeyAlgorithm.ECC_GOST:
|
||||
return parsePrivateECDSA(lines, alg);
|
||||
case DnsKeyAlgorithm.ECDSA:
|
||||
return parsePrivateECDSA(lines, alg);
|
||||
default:
|
||||
throw new IOException("unsupported private key algorithm: " + val);
|
||||
}
|
||||
@ -216,7 +215,7 @@ public class DnsKeyConverter
|
||||
/**
|
||||
* @return the value part of an "attribute:value" pair. The value is trimmed.
|
||||
*/
|
||||
private String value(String av)
|
||||
private static String value(String av)
|
||||
{
|
||||
if (av == null) return null;
|
||||
|
||||
@ -434,6 +433,60 @@ public class DnsKeyConverter
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the remaining lines in a BIND9-style ECDSA private key, parse the key
|
||||
* info and translate it into a JCA private key object.
|
||||
* @param lines The remaining lines in a private key file (after
|
||||
* @throws NoSuchAlgorithmException
|
||||
* If elliptic curve is not available.
|
||||
*/
|
||||
private PrivateKey parsePrivateECDSA(StringTokenizer lines, int algorithm)
|
||||
throws NoSuchAlgorithmException
|
||||
{
|
||||
BigInteger s = null;
|
||||
|
||||
while (lines.hasMoreTokens())
|
||||
{
|
||||
String line = lines.nextToken();
|
||||
if (line == null) continue;
|
||||
|
||||
if (line.startsWith("#")) continue;
|
||||
|
||||
String val = value(line);
|
||||
if (val == null) continue;
|
||||
|
||||
byte[] data = base64.fromString(val);
|
||||
|
||||
if (line.startsWith("PrivateKey: "))
|
||||
{
|
||||
s = new BigInteger(1, data);
|
||||
}
|
||||
}
|
||||
|
||||
if (mECKeyFactory == null)
|
||||
{
|
||||
mECKeyFactory = KeyFactory.getInstance("EC");
|
||||
}
|
||||
ECParameterSpec ec_spec = mAlgorithms.getEllipticCurveParams(algorithm);
|
||||
if (ec_spec == null)
|
||||
{
|
||||
throw new NoSuchAlgorithmException("DNSSEC algorithm " + algorithm +
|
||||
" is not a recognized Elliptic Curve algorithm");
|
||||
}
|
||||
|
||||
KeySpec spec = new ECPrivateKeySpec(s, ec_spec);
|
||||
|
||||
try
|
||||
{
|
||||
return mECKeyFactory.generatePrivate(spec);
|
||||
}
|
||||
catch (InvalidKeySpecException e)
|
||||
{
|
||||
e.printStackTrace();
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a private key and public key, generate the BIND9 style private key
|
||||
* format.
|
||||
@ -452,14 +505,17 @@ public class DnsKeyConverter
|
||||
{
|
||||
return generatePrivateDH((DHPrivateKey) priv, (DHPublicKey) pub, alg);
|
||||
}
|
||||
|
||||
else if (priv instanceof ECPrivateKey && pub instanceof ECPublicKey)
|
||||
{
|
||||
return generatePrivateEC((ECPrivateKey) priv, (ECPublicKey) pub, alg);
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert from 'unsigned' big integer to original 'signed format' in Base64
|
||||
*/
|
||||
private String b64BigInt(BigInteger i)
|
||||
private static String b64BigInt(BigInteger i)
|
||||
{
|
||||
byte[] orig_bytes = i.toByteArray();
|
||||
|
||||
@ -482,10 +538,9 @@ public class DnsKeyConverter
|
||||
{
|
||||
StringWriter sw = new StringWriter();
|
||||
PrintWriter out = new PrintWriter(sw);
|
||||
DnsKeyAlgorithm algs = DnsKeyAlgorithm.getInstance();
|
||||
|
||||
out.println("Private-key-format: v1.2");
|
||||
out.println("Algorithm: " + algorithm + " (" + algs.algToString(algorithm)
|
||||
out.println("Algorithm: " + algorithm + " (" + mAlgorithms.algToString(algorithm)
|
||||
+ ")");
|
||||
out.print("Modulus: ");
|
||||
out.println(b64BigInt(key.getModulus()));
|
||||
@ -513,12 +568,11 @@ public class DnsKeyConverter
|
||||
{
|
||||
StringWriter sw = new StringWriter();
|
||||
PrintWriter out = new PrintWriter(sw);
|
||||
DnsKeyAlgorithm algs = DnsKeyAlgorithm.getInstance();
|
||||
|
||||
DHParameterSpec p = key.getParams();
|
||||
|
||||
out.println("Private-key-format: v1.2");
|
||||
out.println("Algorithm: " + algorithm + " (" + algs.algToString(algorithm)
|
||||
out.println("Algorithm: " + algorithm + " (" + mAlgorithms.algToString(algorithm)
|
||||
+ ")");
|
||||
out.print("Prime(p): ");
|
||||
out.println(b64BigInt(p.getP()));
|
||||
@ -538,12 +592,11 @@ public class DnsKeyConverter
|
||||
{
|
||||
StringWriter sw = new StringWriter();
|
||||
PrintWriter out = new PrintWriter(sw);
|
||||
DnsKeyAlgorithm algs = DnsKeyAlgorithm.getInstance();
|
||||
|
||||
DSAParams p = key.getParams();
|
||||
|
||||
out.println("Private-key-format: v1.2");
|
||||
out.println("Algorithm: " + algorithm + " (" + algs.algToString(algorithm)
|
||||
out.println("Algorithm: " + algorithm + " (" + mAlgorithms.algToString(algorithm)
|
||||
+ ")");
|
||||
out.print("Prime(p): ");
|
||||
out.println(b64BigInt(p.getP()));
|
||||
@ -558,4 +611,23 @@ public class DnsKeyConverter
|
||||
|
||||
return sw.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Given an elliptic curve key pair, and the actual algorithm (which will
|
||||
* describe the curve used), return the BIND9-style text encoding.
|
||||
*/
|
||||
private String generatePrivateEC(ECPrivateKey priv, ECPublicKey pub, int alg)
|
||||
{
|
||||
StringWriter sw = new StringWriter();
|
||||
PrintWriter out = new PrintWriter(sw);
|
||||
|
||||
out.println("Private-key-format: v1.2");
|
||||
out.println("Algorithm: " + alg + " (" + mAlgorithms.algToString(alg)
|
||||
+ ")");
|
||||
out.print("PrivateKey: ");
|
||||
out.println(b64BigInt(priv.getS()));
|
||||
|
||||
return sw.toString();
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -256,6 +256,12 @@ public class DnsSecVerifier
|
||||
sig = SignUtils.convertDSASignature(sig);
|
||||
}
|
||||
|
||||
if (sigrec.getAlgorithm() == DNSSEC.Algorithm.ECDSAP256SHA256 ||
|
||||
sigrec.getAlgorithm() == DNSSEC.Algorithm.ECDSAP384SHA384)
|
||||
{
|
||||
sig = SignUtils.convertECDSASignature(sig);
|
||||
}
|
||||
|
||||
if (!signer.verify(sig))
|
||||
{
|
||||
if (reasons != null) reasons.add("Signature failed to verify cryptographically");
|
||||
@ -283,7 +289,6 @@ public class DnsSecVerifier
|
||||
*
|
||||
* @return true if the set verified, false if it did not.
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
public boolean verify(RRset rrset)
|
||||
{
|
||||
boolean result = mVerifyAllSigs ? true : false;
|
||||
|
@ -33,12 +33,7 @@ import java.util.List;
|
||||
import java.util.ListIterator;
|
||||
import java.util.logging.Logger;
|
||||
|
||||
import org.xbill.DNS.DNSKEYRecord;
|
||||
import org.xbill.DNS.Name;
|
||||
import org.xbill.DNS.RRSIGRecord;
|
||||
import org.xbill.DNS.RRset;
|
||||
import org.xbill.DNS.Record;
|
||||
import org.xbill.DNS.Type;
|
||||
import org.xbill.DNS.*;
|
||||
import org.xbill.DNS.utils.hexdump;
|
||||
|
||||
/**
|
||||
@ -58,7 +53,7 @@ public class JCEDnsSecSigner
|
||||
private DnsKeyConverter mKeyConverter;
|
||||
private boolean mVerboseSigning = false;
|
||||
|
||||
private Logger log;
|
||||
private Logger log = Logger.getLogger(this.getClass().toString());
|
||||
|
||||
public JCEDnsSecSigner()
|
||||
{
|
||||
@ -197,6 +192,12 @@ public class JCEDnsSecSigner
|
||||
DSAPublicKey pk = (DSAPublicKey) pair.getPublic();
|
||||
sig = SignUtils.convertDSASignature(pk.getParams(), sig);
|
||||
}
|
||||
// Convert to RFC 6605, etc format
|
||||
if (pair.getDNSKEYAlgorithm() == DNSSEC.Algorithm.ECDSAP256SHA256 ||
|
||||
pair.getDNSKEYAlgorithm() == DNSSEC.Algorithm.ECDSAP384SHA384)
|
||||
{
|
||||
sig = SignUtils.convertECDSASignature(pair.getDNSKEYAlgorithm(), sig);
|
||||
}
|
||||
RRSIGRecord sigrec = SignUtils.generateRRSIG(sig, presig);
|
||||
if (mVerboseSigning)
|
||||
{
|
||||
|
@ -429,6 +429,126 @@ public class SignUtils
|
||||
return sig;
|
||||
}
|
||||
|
||||
// Given one of the ECDSA algorithms determine the "length", which is the
|
||||
// length, in bytes, of both 'r' and 's' in the ECDSA signature.
|
||||
private static int ecdsaLength(int algorithm) throws SignatureException
|
||||
{
|
||||
switch (algorithm)
|
||||
{
|
||||
case DNSSEC.Algorithm.ECDSAP256SHA256: return 32;
|
||||
case DNSSEC.Algorithm.ECDSAP384SHA384: return 48;
|
||||
default:
|
||||
throw new SignatureException("Algorithm " + algorithm +
|
||||
" is not a supported ECDSA signature algorithm.");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert a JCE standard ECDSA signature (which is a ASN.1 encoding) into a
|
||||
* standard DNS signature.
|
||||
*
|
||||
* The format of the ASN.1 signature is
|
||||
*
|
||||
* ASN1_SEQ . seq_length . ASN1_INT . r_length . R . ANS1_INT . s_length . S
|
||||
*
|
||||
* where R and S may have a leading zero byte if without it the values would
|
||||
* be negative.
|
||||
*
|
||||
* The format of the DNSSEC signature is just R . S where R and S are both
|
||||
* exactly "length" bytes.
|
||||
*
|
||||
* @param signature
|
||||
* The output of a ECDSA signature object.
|
||||
* @return signature data formatted for use in DNSSEC.
|
||||
* @throws SignatureException if the ASN.1 encoding appears to be corrupt.
|
||||
*/
|
||||
public static byte[] convertECDSASignature(int algorithm, byte[] signature)
|
||||
throws SignatureException
|
||||
{
|
||||
int exp_length = ecdsaLength(algorithm);
|
||||
byte[] sig = new byte[exp_length * 2];
|
||||
|
||||
if (signature[0] != ASN1_SEQ || signature[2] != ASN1_INT)
|
||||
{
|
||||
throw new SignatureException("Invalid ASN.1 signature format: expected SEQ, INT");
|
||||
}
|
||||
int r_len = signature[3];
|
||||
int r_pos = 4;
|
||||
|
||||
if (signature[r_pos + r_len] != ASN1_INT)
|
||||
{
|
||||
throw new SignatureException("Invalid ASN.1 signature format: expected SEQ, INT, INT");
|
||||
}
|
||||
int s_pos = r_pos + r_len + 2;
|
||||
int s_len = signature[r_pos + r_len + 1];
|
||||
|
||||
// Adjust for leading zeros on both R and S
|
||||
if (signature[r_pos] == 0) {
|
||||
r_pos++;
|
||||
}
|
||||
if (signature[s_pos] == 0) {
|
||||
s_pos++;
|
||||
}
|
||||
|
||||
System.arraycopy(signature, r_pos, sig, 0, exp_length);
|
||||
System.arraycopy(signature, s_pos, sig, exp_length, exp_length);
|
||||
|
||||
return sig;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert a DNS standard ECDSA signature (defined in RFC 6605) into a
|
||||
* JCE standard ECDSA signature, which is encoded in ASN.1.
|
||||
*
|
||||
* The format of the ASN.1 signature is
|
||||
*
|
||||
* ASN1_SEQ . seq_length . ASN1_INT . r_length . R . ANS1_INT . s_length . S
|
||||
*
|
||||
* where R and S may have a leading zero byte if without it the values would
|
||||
* be negative.
|
||||
*
|
||||
* The format of the DNSSEC signature is just R . S where R and S are both
|
||||
* exactly "length" bytes.
|
||||
*
|
||||
* @param signature
|
||||
* The binary signature data from an RRSIG record.
|
||||
* @return signature data that may be used in a JCE Signature object for
|
||||
* verification purposes.
|
||||
*/
|
||||
public static byte[] convertECDSASignature(byte[] signature)
|
||||
{
|
||||
byte r_src_pos, r_src_len, r_pad, s_src_pos, s_src_len, s_pad, len;
|
||||
|
||||
r_src_len = s_src_len = (byte) (signature.length / 2);
|
||||
r_src_pos = 0; r_pad = 0;
|
||||
s_src_pos = (byte) (r_src_pos + r_src_len); s_pad = 0;
|
||||
len = (byte) (6 + r_src_len + s_src_len);
|
||||
|
||||
if (signature[r_src_pos] < 0) {
|
||||
r_pad = 1; len++;
|
||||
}
|
||||
if (signature[s_src_pos] < 0) {
|
||||
s_pad = 1; len++;
|
||||
}
|
||||
byte[] sig = new byte[len];
|
||||
byte pos = 0;
|
||||
|
||||
sig[pos++] = ASN1_SEQ;
|
||||
sig[pos++] = (byte) (len - 2);
|
||||
sig[pos++] = ASN1_INT;
|
||||
sig[pos++] = (byte) (r_src_len + r_pad);
|
||||
pos += r_pad;
|
||||
System.arraycopy(signature, r_src_pos, sig, pos, r_src_len);
|
||||
pos += r_src_len;
|
||||
|
||||
sig[pos++] = ASN1_INT;
|
||||
sig[pos++] = (byte) (s_src_len + s_pad);
|
||||
pos += s_pad;
|
||||
System.arraycopy(signature, s_src_pos, sig, pos, s_src_len);
|
||||
|
||||
return sig;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is a convenience routine to help us classify records/RRsets.
|
||||
*
|
||||
|
Loading…
Reference in New Issue
Block a user