somewhat gratutious reformatting by eclipse

This commit is contained in:
David Blacka 2010-05-31 12:16:14 -04:00
parent 85f7635d43
commit ab60743341
10 changed files with 624 additions and 627 deletions

View File

@ -31,7 +31,6 @@ import java.io.IOException;
import java.util.*;
/**
* This resolver module implements a "captive" DNSSEC validator. The captive
* validator does not have direct access to the Internet and DNS system --
@ -48,12 +47,12 @@ public class CaptiveValidator {
// The local verification utility.
private DnsSecVerifier mVerifier;
private Logger log = Logger.getLogger(this.getClass());
private Logger log = Logger.getLogger(this.getClass());
public CaptiveValidator() {
mVerifier = new DnsSecVerifier();
mValUtils = new ValUtils(mVerifier);
mTrustedKeys = new TrustAnchorStore();
mVerifier = new DnsSecVerifier();
mValUtils = new ValUtils(mVerifier);
mTrustedKeys = new TrustAnchorStore();
}
// ---------------- Module Initialization -------------------
@ -61,18 +60,17 @@ public class CaptiveValidator {
/**
* Add a set of trusted keys from a file. The file should be in DNS master
* zone file format. Only DNSKEY records will be added.
*
*
* @param filename
* The file contains the trusted keys.
* @throws IOException
*/
@SuppressWarnings("unchecked")
public void addTrustedKeysFromFile(String filename)
throws IOException {
public void addTrustedKeysFromFile(String filename) throws IOException {
// First read in the whole trust anchor file.
Master master = new Master(filename, Name.root, 0);
Master master = new Master(filename, Name.root, 0);
ArrayList<Record> records = new ArrayList<Record>();
Record r = null;
Record r = null;
while ((r = master.nextRecord()) != null) {
records.add(r);
@ -100,9 +98,9 @@ public class CaptiveValidator {
}
// If this record matches our current RRset, we can just add it.
if (cur_rrset.getName().equals(rec.getName()) &&
(cur_rrset.getType() == rec.getType()) &&
(cur_rrset.getDClass() == rec.getDClass())) {
if (cur_rrset.getName().equals(rec.getName())
&& (cur_rrset.getType() == rec.getType())
&& (cur_rrset.getDClass() == rec.getDClass())) {
cur_rrset.addRR(rec);
continue;
@ -121,7 +119,7 @@ public class CaptiveValidator {
}
public void addTrustedKeysFromResponse(Message m) {
RRset [] rrsets = m.getSectionRRsets(Section.ANSWER);
RRset[] rrsets = m.getSectionRRsets(Section.ANSWER);
for (int i = 0; i < rrsets.length; ++i) {
if (rrsets[i].getType() == Type.DNSKEY) {
@ -137,7 +135,7 @@ public class CaptiveValidator {
* This routine normalizes a response. This includes removing "irrelevant"
* records from the answer and additional sections and (re)synthesizing
* CNAMEs from DNAMEs, if present.
*
*
* @param response
*/
private SMessage normalize(SMessage m) {
@ -145,26 +143,25 @@ public class CaptiveValidator {
return m;
}
if ((m.getRcode() != Rcode.NOERROR) &&
(m.getRcode() != Rcode.NXDOMAIN)) {
if ((m.getRcode() != Rcode.NOERROR) && (m.getRcode() != Rcode.NXDOMAIN)) {
return m;
}
Name qname = m.getQuestion().getName();
int qtype = m.getQuestion().getType();
Name qname = m.getQuestion().getName();
int qtype = m.getQuestion().getType();
Name sname = qname;
Name sname = qname;
// For the ANSWER section, remove all "irrelevant" records and add
// synthesized CNAMEs from DNAMEs
// This will strip out-of-order CNAMEs as well.
List<SRRset> rrset_list = m.getSectionList(Section.ANSWER);
Set<Name> additional_names = new HashSet<Name>();
List<SRRset> rrset_list = m.getSectionList(Section.ANSWER);
Set<Name> additional_names = new HashSet<Name>();
for (ListIterator<SRRset> i = rrset_list.listIterator(); i.hasNext();) {
SRRset rrset = i.next();
int type = rrset.getType();
Name n = rrset.getName();
int type = rrset.getType();
Name n = rrset.getName();
// Handle DNAME synthesis; DNAME synthesis does not occur at the
// DNAME name itself.
@ -182,16 +179,16 @@ public class CaptiveValidator {
Name cname_alias = sname.fromDNAME(dname);
// Note that synthesized CNAMEs should have a TTL of zero.
CNAMERecord cname = new CNAMERecord(sname,
dname.getDClass(), 0, cname_alias);
SRRset cname_rrset = new SRRset();
CNAMERecord cname = new CNAMERecord(sname, dname
.getDClass(), 0, cname_alias);
SRRset cname_rrset = new SRRset();
cname_rrset.addRR(cname);
i.add(cname_rrset);
sname = cname_alias;
} catch (NameTooLongException e) {
log.debug("not adding synthesized CNAME -- " +
"generated name is too long", e);
log.debug("not adding synthesized CNAME -- "
+ "generated name is too long", e);
}
continue;
@ -244,10 +241,10 @@ public class CaptiveValidator {
for (Iterator<SRRset> i = rrset_list.iterator(); i.hasNext();) {
SRRset rrset = i.next();
int type = rrset.getType();
int type = rrset.getType();
if (((type == Type.A) || (type == Type.AAAA)) &&
!additional_names.contains(rrset.getName())) {
if (((type == Type.A) || (type == Type.AAAA))
&& !additional_names.contains(rrset.getName())) {
i.remove();
}
}
@ -257,7 +254,7 @@ public class CaptiveValidator {
/**
* Extract additional names from the records in an rrset.
*
*
* @param additional_names
* The set to add the additional names to, if any.
* @param rrset
@ -269,8 +266,8 @@ public class CaptiveValidator {
}
for (Iterator<Record> i = rrset.rrs(); i.hasNext();) {
Record r = i.next();
Name add_name = r.getAdditionalName();
Record r = i.next();
Name add_name = r.getAdditionalName();
if (add_name != null) {
additional_names.add(add_name);
@ -279,8 +276,8 @@ public class CaptiveValidator {
}
private SRRset findKeys(SMessage message) {
Name qname = message.getQName();
int qclass = message.getQClass();
Name qname = message.getQName();
int qclass = message.getQClass();
return mTrustedKeys.find(qname, qclass);
}
@ -291,12 +288,12 @@ public class CaptiveValidator {
* on in the original request, the response was already validated, or the
* response is a kind of message that is unvalidatable (i.e., SERVFAIL,
* REFUSED, etc.)
*
*
* @param message
* The message to check.
* @param origRequest
* The original request received from the client.
*
*
* @return true if the response could use validation (although this does not
* mean we can actually validate this response).
*/
@ -310,8 +307,8 @@ public class CaptiveValidator {
return false;
}
if (!mTrustedKeys.isBelowTrustAnchor(message.getQName(),
message.getQClass())) {
if (!mTrustedKeys.isBelowTrustAnchor(message.getQName(), message
.getQClass())) {
return false;
}
@ -322,11 +319,11 @@ public class CaptiveValidator {
* Given a "positive" response -- a response that contains an answer to the
* question, and no CNAME chain, validate this response. This generally
* consists of verifying the answer RRset and the authority RRsets.
*
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
*
* @param response
* The response to validate.
* @param request
@ -336,18 +333,18 @@ public class CaptiveValidator {
* answer.
*/
private void validatePositiveResponse(SMessage message, SRRset key_rrset) {
Name qname = message.getQName();
int qtype = message.getQType();
Name qname = message.getQName();
int qtype = message.getQType();
SMessage m = message;
SMessage m = message;
// validate the ANSWER section - this will be the answer itself
SRRset [] rrsets = m.getSectionRRsets(Section.ANSWER);
SRRset[] rrsets = m.getSectionRRsets(Section.ANSWER);
Name wc = null;
boolean wcNSEC_ok = false;
boolean dname = false;
List<NSEC3Record> nsec3s = null;
Name wc = null;
boolean wcNSEC_ok = false;
boolean dname = false;
List<NSEC3Record> nsec3s = null;
for (int i = 0; i < rrsets.length; i++) {
// Skip the CNAME following a (validated) DNAME.
@ -366,8 +363,8 @@ public class CaptiveValidator {
// If the (answer) rrset failed to validate, then this message is
// BAD.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed ANSWER rrset: " +
rrsets[i]);
log.debug("Positive response has failed ANSWER rrset: "
+ rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
@ -395,8 +392,8 @@ public class CaptiveValidator {
// a
// bad message.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed AUTHORITY rrset: " +
rrsets[i]);
log.debug("Positive response has failed AUTHORITY rrset: "
+ rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
@ -408,8 +405,8 @@ public class CaptiveValidator {
if ((wc != null) && (rrsets[i].getType() == Type.NSEC)) {
NSECRecord nsec = (NSECRecord) rrsets[i].first();
if (ValUtils.nsecProvesNameError(nsec, qname,
key_rrset.getName())) {
if (ValUtils.nsecProvesNameError(nsec, qname, key_rrset
.getName())) {
Name nsec_wc = ValUtils.nsecWildcard(qname, nsec);
if (!wc.equals(nsec_wc)) {
@ -440,7 +437,7 @@ public class CaptiveValidator {
// records.
if ((wc != null) && !wcNSEC_ok && (nsec3s != null)) {
if (NSEC3ValUtils.proveWildcard(nsec3s, qname, key_rrset.getName(),
wc)) {
wc)) {
wcNSEC_ok = true;
}
}
@ -469,13 +466,13 @@ public class CaptiveValidator {
}
// validate the AUTHORITY section.
SRRset [] rrsets = m.getSectionRRsets(Section.AUTHORITY);
SRRset[] rrsets = m.getSectionRRsets(Section.AUTHORITY);
boolean secure_delegation = false;
Name delegation = null;
Name nsec3zone = null;
NSECRecord nsec = null;
List<NSEC3Record> nsec3s = null;
boolean secure_delegation = false;
Name delegation = null;
Name nsec3zone = null;
NSECRecord nsec = null;
List<NSEC3Record> nsec3s = null;
// validate the AUTHORITY section as well - this will generally be the
// NS rrset, plus proof of a secure delegation or not
@ -492,8 +489,8 @@ public class CaptiveValidator {
// have
// a bad message.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed AUTHORITY rrset: " +
rrsets[i]);
log.debug("Positive response has failed AUTHORITY rrset: "
+ rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
@ -501,40 +498,39 @@ public class CaptiveValidator {
}
switch (type) {
case Type.DS:
secure_delegation = true;
case Type.DS:
secure_delegation = true;
break;
break;
case Type.NS:
delegation = rrsets[i].getName();
case Type.NS:
delegation = rrsets[i].getName();
break;
break;
case Type.NSEC:
nsec = (NSECRecord) rrsets[i].first();
case Type.NSEC:
nsec = (NSECRecord) rrsets[i].first();
break;
break;
case Type.NSEC3:
case Type.NSEC3:
if (nsec3s == null) {
nsec3s = new ArrayList<NSEC3Record>();
}
if (nsec3s == null) {
nsec3s = new ArrayList<NSEC3Record>();
}
NSEC3Record nsec3 = (NSEC3Record) rrsets[i].first();
nsec3s.add(nsec3);
nsec3zone = rrsets[i].getSignerName(); // this is a hack of
// sorts.
NSEC3Record nsec3 = (NSEC3Record) rrsets[i].first();
nsec3s.add(nsec3);
nsec3zone = rrsets[i].getSignerName(); // this is a hack of
// sorts.
break;
break;
default:
log.warn(
"Encountered unexpected type in a REFERRAL response: " +
Type.string(type));
default:
log.warn("Encountered unexpected type in a REFERRAL response: "
+ Type.string(type));
break;
break;
}
}
@ -579,7 +575,8 @@ public class CaptiveValidator {
}
if (nsec3s.size() > 0) {
byte status = NSEC3ValUtils.proveNoDS(nsec3s, delegation, nsec3zone);
byte status = NSEC3ValUtils
.proveNoDS(nsec3s, delegation, nsec3zone);
if (status != SecurityStatus.SECURE) {
// the NSEC3 RRs MUST prove no DS, so the INDETERMINATE state is
@ -598,25 +595,26 @@ public class CaptiveValidator {
m.setStatus(SecurityStatus.BOGUS);
}
private void validateCNAMEResponse(SMessage message, SRRset key_rrset) {}
private void validateCNAMEResponse(SMessage message, SRRset key_rrset) {
}
/**
* Given an "ANY" response -- a response that contains an answer to a
* qtype==ANY question, with answers. This consists of simply verifying all
* present answer/auth RRsets, with no checking that all types are present.
*
*
* NOTE: it may be possible to get parent-side delegation point records
* here, which won't all be signed. Right now, this routine relies on the
* upstream iterative resolver to not return these responses -- instead
* treating them as referrals.
*
*
* NOTE: RFC 4035 is silent on this issue, so this may change upon
* clarification.
*
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
*
* @param message
* The response to validate.
* @param key_rrset
@ -628,13 +626,13 @@ public class CaptiveValidator {
if (qtype != Type.ANY) {
throw new IllegalArgumentException(
"ANY validation called on non-ANY response.");
"ANY validation called on non-ANY response.");
}
SMessage m = message;
// validate the ANSWER section.
SRRset [] rrsets = m.getSectionRRsets(Section.ANSWER);
SRRset[] rrsets = m.getSectionRRsets(Section.ANSWER);
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
@ -642,8 +640,8 @@ public class CaptiveValidator {
// If the (answer) rrset failed to validate, then this message is
// BAD.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed ANSWER rrset: " +
rrsets[i]);
log.debug("Positive response has failed ANSWER rrset: "
+ rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
@ -661,8 +659,8 @@ public class CaptiveValidator {
// a
// bad message.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed AUTHORITY rrset: " +
rrsets[i]);
log.debug("Positive response has failed AUTHORITY rrset: "
+ rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
@ -679,11 +677,11 @@ public class CaptiveValidator {
* the authority section rrsets and making certain that the authority
* section NSEC/NSEC3s proves that the qname does exist and the qtype
* doesn't.
*
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
*
* @param response
* The response to validate.
* @param request
@ -692,10 +690,10 @@ public class CaptiveValidator {
* The trusted DNSKEY rrset that signs this response.
*/
private void validateNodataResponse(SMessage message, SRRset key_rrset) {
Name qname = message.getQName();
int qtype = message.getQType();
Name qname = message.getQName();
int qtype = message.getQType();
SMessage m = message;
SMessage m = message;
// Since we are here, there must be nothing in the ANSWER section to
// validate. (Note: CNAME/DNAME responses will not directly get here --
@ -703,29 +701,29 @@ public class CaptiveValidator {
// responses.)
// validate the AUTHORITY section
SRRset [] rrsets = m.getSectionRRsets(Section.AUTHORITY);
SRRset[] rrsets = m.getSectionRRsets(Section.AUTHORITY);
boolean hasValidNSEC = false; // If true, then the NODATA has been
// proven.
boolean hasValidNSEC = false; // If true, then the NODATA has been
// proven.
Name ce = null; // for wildcard NODATA responses. This is the proven
// closest encloser.
Name ce = null; // for wildcard NODATA responses. This is the proven
// closest encloser.
NSECRecord wc = null; // for wildcard NODATA responses. This is the
// wildcard NSEC.
NSECRecord wc = null; // for wildcard NODATA responses. This is the
// wildcard NSEC.
List<NSEC3Record> nsec3s = null; // A collection of NSEC3 RRs found in
// the authority
// section.
List<NSEC3Record> nsec3s = null; // A collection of NSEC3 RRs found in
// the authority
// section.
Name nsec3Signer = null; // The RRSIG signer field for the NSEC3 RRs.
Name nsec3Signer = null; // The RRSIG signer field for the NSEC3 RRs.
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
if (status != SecurityStatus.SECURE) {
log.debug("NODATA response has failed AUTHORITY rrset: " +
rrsets[i]);
log.debug("NODATA response has failed AUTHORITY rrset: "
+ rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
@ -742,8 +740,8 @@ public class CaptiveValidator {
if (nsec.getName().isWild()) {
wc = nsec;
}
} else if (ValUtils.nsecProvesNameError(nsec, qname,
rrsets[i].getSignerName())) {
} else if (ValUtils.nsecProvesNameError(nsec, qname, rrsets[i]
.getSignerName())) {
ce = ValUtils.closestEncloser(qname, nsec);
}
}
@ -785,8 +783,8 @@ public class CaptiveValidator {
}
if (!hasValidNSEC) {
log.debug("NODATA response failed to prove NODATA " +
"status with NSEC/NSEC3");
log.debug("NODATA response failed to prove NODATA "
+ "status with NSEC/NSEC3");
log.trace("Failed NODATA:\n" + m);
m.setStatus(SecurityStatus.BOGUS);
@ -802,11 +800,11 @@ public class CaptiveValidator {
* Rcode. This consists of verifying the authority section rrsets and making
* certain that the authority section NSEC proves that the qname doesn't
* exist and the covering wildcard also doesn't exist..
*
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
*
* @param response
* The response to validate.
* @param request
@ -815,13 +813,13 @@ public class CaptiveValidator {
* The trusted DNSKEY rrset that signs this response.
*/
private void validateNameErrorResponse(SMessage message, SRRset key_rrset) {
Name qname = message.getQName();
Name qname = message.getQName();
SMessage m = message;
SMessage m = message;
if (message.getCount(Section.ANSWER) > 0) {
log.warn(
"NAME ERROR response contained records in the ANSWER SECTION");
log
.warn("NAME ERROR response contained records in the ANSWER SECTION");
message.setStatus(SecurityStatus.INVALID);
return;
@ -830,18 +828,18 @@ public class CaptiveValidator {
// Validate the authority section -- all RRsets in the authority section
// must be signed and valid.
// In addition, the NSEC record(s) must prove the NXDOMAIN condition.
boolean hasValidNSEC = false;
boolean hasValidWCNSEC = false;
SRRset [] rrsets = m.getSectionRRsets(Section.AUTHORITY);
List<NSEC3Record> nsec3s = null;
Name nsec3Signer = null;
boolean hasValidNSEC = false;
boolean hasValidWCNSEC = false;
SRRset[] rrsets = m.getSectionRRsets(Section.AUTHORITY);
List<NSEC3Record> nsec3s = null;
Name nsec3Signer = null;
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
if (status != SecurityStatus.SECURE) {
log.debug("NameError response has failed AUTHORITY rrset: " +
rrsets[i]);
log.debug("NameError response has failed AUTHORITY rrset: "
+ rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
@ -850,13 +848,13 @@ public class CaptiveValidator {
if (rrsets[i].getType() == Type.NSEC) {
NSECRecord nsec = (NSECRecord) rrsets[i].first();
if (ValUtils.nsecProvesNameError(nsec, qname,
rrsets[i].getSignerName())) {
if (ValUtils.nsecProvesNameError(nsec, qname, rrsets[i]
.getSignerName())) {
hasValidNSEC = true;
}
if (ValUtils.nsecProvesNoWC(nsec, qname,
rrsets[i].getSignerName())) {
if (ValUtils.nsecProvesNoWC(nsec, qname, rrsets[i]
.getSignerName())) {
hasValidWCNSEC = true;
}
}
@ -884,26 +882,26 @@ public class CaptiveValidator {
return;
}
hasValidNSEC = NSEC3ValUtils.proveNameError(nsec3s, qname,
hasValidNSEC = NSEC3ValUtils.proveNameError(nsec3s, qname,
nsec3Signer);
// Note that we assume that the NSEC3ValUtils proofs encompass the
// wildcard part of the proof.
hasValidWCNSEC = hasValidNSEC;
hasValidWCNSEC = hasValidNSEC;
}
// If the message fails to prove either condition, it is bogus.
if (!hasValidNSEC) {
log.debug("NameError response has failed to prove: " +
"qname does not exist");
log.debug("NameError response has failed to prove: "
+ "qname does not exist");
m.setStatus(SecurityStatus.BOGUS);
return;
}
if (!hasValidWCNSEC) {
log.debug("NameError response has failed to prove: " +
"covering wildcard does not exist");
log.debug("NameError response has failed to prove: "
+ "covering wildcard does not exist");
m.setStatus(SecurityStatus.BOGUS);
return;
@ -939,55 +937,56 @@ public class CaptiveValidator {
return SecurityStatus.BOGUS;
}
ValUtils.ResponseType subtype = ValUtils.classifyResponse(message, zone);
ValUtils.ResponseType subtype = ValUtils
.classifyResponse(message, zone);
switch (subtype) {
case POSITIVE:
log.trace("Validating a positive response");
validatePositiveResponse(message, key_rrset);
case POSITIVE:
log.trace("Validating a positive response");
validatePositiveResponse(message, key_rrset);
break;
break;
case REFERRAL:
validateReferral(message, key_rrset);
case REFERRAL:
validateReferral(message, key_rrset);
break;
break;
case NODATA:
log.trace("Validating a NODATA response");
validateNodataResponse(message, key_rrset);
case NODATA:
log.trace("Validating a NODATA response");
validateNodataResponse(message, key_rrset);
break;
break;
case NAMEERROR:
log.trace("Validating a NXDOMAIN response");
validateNameErrorResponse(message, key_rrset);
case NAMEERROR:
log.trace("Validating a NXDOMAIN response");
validateNameErrorResponse(message, key_rrset);
break;
break;
case CNAME:
log.trace("Validating a CNAME response");
validateCNAMEResponse(message, key_rrset);
case CNAME:
log.trace("Validating a CNAME response");
validateCNAMEResponse(message, key_rrset);
break;
break;
case ANY:
log.trace("Validating a positive ANY response");
validateAnyResponse(message, key_rrset);
case ANY:
log.trace("Validating a positive ANY response");
validateAnyResponse(message, key_rrset);
break;
break;
default:
log.error("unhandled response subtype: " + subtype);
default:
log.error("unhandled response subtype: " + subtype);
}
return message.getSecurityStatus().getStatus();
}
public byte validateMessage(Message message, String zone)
throws TextParseException {
throws TextParseException {
SMessage sm = new SMessage(message);
Name z = Name.fromString(zone);
Name z = Name.fromString(zone);
return validateMessage(sm, z);
}

View File

@ -34,7 +34,6 @@ import java.security.*;
import java.util.*;
/**
* A class for performing basic DNSSEC verification. The DNSJAVA package
* contains a similar class. This is a re-implementation that allows us to have
@ -42,9 +41,9 @@ import java.util.*;
*/
public class DnsSecVerifier {
public static final int UNKNOWN = 0;
public static final int RSA = 1;
public static final int DSA = 2;
private Logger log = Logger.getLogger(this.getClass());
public static final int RSA = 1;
public static final int DSA = 2;
private Logger log = Logger.getLogger(this.getClass());
/**
* This is a mapping of DNSSEC algorithm numbers/private identifiers to JCA
@ -56,20 +55,20 @@ public class DnsSecVerifier {
mAlgorithmMap = new HashMap<Integer, AlgEntry>();
// set the default algorithm map.
mAlgorithmMap.put(new Integer(DNSSEC.RSAMD5),
new AlgEntry("MD5withRSA", DNSSEC.RSAMD5, false));
mAlgorithmMap.put(new Integer(DNSSEC.DSA),
new AlgEntry("SHA1withDSA", DNSSEC.DSA, true));
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA1),
new AlgEntry("SHA1withRSA", DNSSEC.RSASHA1, false));
mAlgorithmMap.put(new Integer(DNSSEC.DSA_NSEC3_SHA1),
new AlgEntry("SHA1withDSA", DNSSEC.DSA, true));
mAlgorithmMap.put(new Integer(DNSSEC.RSA_NSEC3_SHA1),
new AlgEntry("SHA1withRSA", DNSSEC.RSASHA1, false));
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA256),
new AlgEntry("SHA256withRSA", DNSSEC.RSASHA256, false));
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA512),
new AlgEntry("SHA512withRSA", DNSSEC.RSASHA512, false));
mAlgorithmMap.put(new Integer(DNSSEC.RSAMD5), new AlgEntry(
"MD5withRSA", DNSSEC.RSAMD5, false));
mAlgorithmMap.put(new Integer(DNSSEC.DSA), new AlgEntry("SHA1withDSA",
DNSSEC.DSA, true));
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA1), new AlgEntry(
"SHA1withRSA", DNSSEC.RSASHA1, false));
mAlgorithmMap.put(new Integer(DNSSEC.DSA_NSEC3_SHA1), new AlgEntry(
"SHA1withDSA", DNSSEC.DSA, true));
mAlgorithmMap.put(new Integer(DNSSEC.RSA_NSEC3_SHA1), new AlgEntry(
"SHA1withRSA", DNSSEC.RSASHA1, false));
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA256), new AlgEntry(
"SHA256withRSA", DNSSEC.RSASHA256, false));
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA512), new AlgEntry(
"SHA512withRSA", DNSSEC.RSASHA512, false));
}
private boolean isDSA(int algorithm) {
@ -109,18 +108,18 @@ public class DnsSecVerifier {
for (Util.ConfigEntry entry : aliases) {
Integer alg_alias = new Integer(Util.parseInt(entry.key, -1));
Integer alg_orig = new Integer(Util.parseInt(entry.value, -1));
Integer alg_orig = new Integer(Util.parseInt(entry.value, -1));
if (!mAlgorithmMap.containsKey(alg_orig)) {
log.warn("Unable to alias " + alg_alias +
" to unknown algorithm " + alg_orig);
log.warn("Unable to alias " + alg_alias
+ " to unknown algorithm " + alg_orig);
continue;
}
if (mAlgorithmMap.containsKey(alg_alias)) {
log.warn("Algorithm alias " + alg_alias +
" is already defined and cannot be redefined");
log.warn("Algorithm alias " + alg_alias
+ " is already defined and cannot be redefined");
continue;
}
@ -135,8 +134,8 @@ public class DnsSecVerifier {
if (entry == null) {
log.warn("DNSSEC alg " + alg + " has a null entry!");
} else {
log.debug("DNSSEC alg " + alg + " maps to " + entry.jcaName +
" (" + entry.dnssecAlg + ")");
log.debug("DNSSEC alg " + alg + " maps to " + entry.jcaName
+ " (" + entry.dnssecAlg + ")");
}
}
}
@ -145,7 +144,7 @@ public class DnsSecVerifier {
* Find the matching DNSKEY(s) to an RRSIG within a DNSKEY rrset. Normally
* this will only return one DNSKEY. It can return more than one, since
* KeyID/Footprints are not guaranteed to be unique.
*
*
* @param dnskey_rrset
* The DNSKEY rrset to search.
* @param signature
@ -156,17 +155,19 @@ public class DnsSecVerifier {
@SuppressWarnings("unchecked")
private List<DNSKEYRecord> findKey(RRset dnskey_rrset, RRSIGRecord signature) {
if (!signature.getSigner().equals(dnskey_rrset.getName())) {
log.trace("findKey: could not find appropriate key because " +
"incorrect keyset was supplied. Wanted: " +
signature.getSigner() + ", got: " + dnskey_rrset.getName());
log.trace("findKey: could not find appropriate key because "
+ "incorrect keyset was supplied. Wanted: "
+ signature.getSigner() + ", got: "
+ dnskey_rrset.getName());
return null;
}
int keyid = signature.getFootprint();
int alg = signature.getAlgorithm();
int keyid = signature.getFootprint();
int alg = signature.getAlgorithm();
List<DNSKEYRecord> res = new ArrayList<DNSKEYRecord>(dnskey_rrset.size());
List<DNSKEYRecord> res = new ArrayList<DNSKEYRecord>(dnskey_rrset
.size());
for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) {
DNSKEYRecord r = (DNSKEYRecord) i.next();
@ -177,8 +178,8 @@ public class DnsSecVerifier {
}
if (res.size() == 0) {
log.trace("findKey: could not find a key matching " +
"the algorithm and footprint in supplied keyset. ");
log.trace("findKey: could not find a key matching "
+ "the algorithm and footprint in supplied keyset. ");
return null;
}
@ -189,7 +190,7 @@ public class DnsSecVerifier {
/**
* Check to see if a signature looks valid (i.e., matches the rrset in
* question, in the validity period, etc.)
*
*
* @param rrset
* The rrset that the signature belongs to.
* @param sigrec
@ -214,8 +215,8 @@ public class DnsSecVerifier {
return SecurityStatus.BOGUS;
}
Date now = new Date();
Date start = sigrec.getTimeSigned();
Date now = new Date();
Date start = sigrec.getTimeSigned();
Date expire = sigrec.getExpire();
if (now.before(start)) {
@ -225,8 +226,8 @@ public class DnsSecVerifier {
}
if (now.after(expire)) {
log.debug("Signature has expired (now = " + now +
", sig expires = " + expire);
log.debug("Signature has expired (now = " + now
+ ", sig expires = " + expire);
return SecurityStatus.BOGUS;
}
@ -235,8 +236,8 @@ public class DnsSecVerifier {
}
public PublicKey parseDNSKEY(DNSKEYRecord key) {
AlgEntry ae = (AlgEntry) mAlgorithmMap.get(new Integer(
key.getAlgorithm()));
AlgEntry ae = (AlgEntry) mAlgorithmMap.get(new Integer(key
.getAlgorithm()));
if (key.getAlgorithm() != ae.dnssecAlg) {
// Recast the DNSKEYRecord in question as one using the offical
@ -254,7 +255,7 @@ public class DnsSecVerifier {
/**
* Actually cryptographically verify a signature over the rrset. The RRSIG
* record must match the rrset being verified (see checkSignature).
*
*
* @param rrset
* The rrset to verify.
* @param sigrec
@ -265,19 +266,19 @@ public class DnsSecVerifier {
* UNCHECKED if we just couldn't actually do the function.
*/
public byte verifySignature(RRset rrset, RRSIGRecord sigrec,
DNSKEYRecord key) {
DNSKEYRecord key) {
try {
PublicKey pk = parseDNSKEY(key);
if (pk == null) {
log.warn(
"Could not convert DNSKEY record to a JCA public key: " +
key);
log
.warn("Could not convert DNSKEY record to a JCA public key: "
+ key);
return SecurityStatus.UNCHECKED;
}
byte [] data = SignUtils.generateSigData(rrset, sigrec);
byte[] data = SignUtils.generateSigData(rrset, sigrec);
Signature signer = getSignature(sigrec.getAlgorithm());
@ -288,7 +289,7 @@ public class DnsSecVerifier {
signer.initVerify(pk);
signer.update(data);
byte [] sig = sigrec.getSignature();
byte[] sig = sigrec.getSignature();
if (isDSA(sigrec.getAlgorithm())) {
sig = SignUtils.convertDSASignature(sig);
@ -318,7 +319,7 @@ public class DnsSecVerifier {
/**
* Verify an RRset against a particular signature.
*
*
* @return DNSSEC.Secure if the signature verfied, DNSSEC.Failed if it did
* not verify (for any reason), and DNSSEC.Insecure if verification
* could not be completed (usually because the public key was not
@ -356,7 +357,7 @@ public class DnsSecVerifier {
* Verifies an RRset. This routine does not modify the RRset. This RRset is
* presumed to be verifiable, and the correct DNSKEY rrset is presumed to
* have been found.
*
*
* @return SecurityStatus.SECURE if the rrest verified positively,
* SecurityStatus.BOGUS otherwise.
*/
@ -373,7 +374,7 @@ public class DnsSecVerifier {
while (i.hasNext()) {
RRSIGRecord sigrec = (RRSIGRecord) i.next();
byte res = verifySignature(rrset, sigrec, key_rrset);
byte res = verifySignature(rrset, sigrec, key_rrset);
if (res == SecurityStatus.SECURE) {
return res;
@ -389,7 +390,7 @@ public class DnsSecVerifier {
* Verify an RRset against a single DNSKEY. Use this when you must be
* certain that an RRset signed and verifies with a particular DNSKEY (as
* opposed to a particular DNSKEY rrset).
*
*
* @param rrset
* The rrset to verify.
* @param dnskey
@ -437,12 +438,12 @@ public class DnsSecVerifier {
public int baseAlgorithm(int algorithm) {
switch (algorithm) {
case DNSSEC.RSAMD5:
case DNSSEC.RSASHA1:
return RSA;
case DNSSEC.RSAMD5:
case DNSSEC.RSASHA1:
return RSA;
case DNSSEC.DSA:
return DSA;
case DNSSEC.DSA:
return DSA;
}
AlgEntry entry = (AlgEntry) mAlgorithmMap.get(new Integer(algorithm));
@ -463,7 +464,8 @@ public class DnsSecVerifier {
Signature s = null;
try {
AlgEntry entry = (AlgEntry) mAlgorithmMap.get(new Integer(algorithm));
AlgEntry entry = (AlgEntry) mAlgorithmMap
.get(new Integer(algorithm));
if (entry == null) {
log.info("DNSSEC algorithm " + algorithm + " not recognized.");
@ -481,14 +483,14 @@ public class DnsSecVerifier {
}
private static class AlgEntry {
public String jcaName;
public String jcaName;
public boolean isDSA;
public int dnssecAlg;
public int dnssecAlg;
public AlgEntry(String name, int dnssecAlg, boolean isDSA) {
jcaName = name;
this.dnssecAlg = dnssecAlg;
this.isDSA = isDSA;
jcaName = name;
this.dnssecAlg = dnssecAlg;
this.isDSA = isDSA;
}
}

View File

@ -34,17 +34,16 @@ import java.security.NoSuchAlgorithmException;
import java.util.*;
public class NSEC3ValUtils {
// FIXME: should probably refactor to handle different NSEC3 parameters more
// efficiently.
// Given a list of NSEC3 RRs, they should be grouped according to
// parameters. The idea is to hash and compare for each group independently,
// instead of having to skip NSEC3 RRs with the wrong parameters.
private static Name asterisk_label = Name.fromConstantString("*");
private static Logger st_log = Logger.getLogger(NSEC3ValUtils.class);
private static final base32 b32 = new base32(base32.Alphabet.BASE32HEX,
false, false);
private static Name asterisk_label = Name.fromConstantString("*");
private static Logger st_log = Logger.getLogger(NSEC3ValUtils.class);
private static final base32 b32 = new base32(base32.Alphabet.BASE32HEX,
false, false);
public static boolean supportsHashAlgorithm(int alg) {
if (alg == NSEC3Record.SHA1_DIGEST_ID) {
@ -76,7 +75,7 @@ public class NSEC3ValUtils {
* Given a list of NSEC3Records that are part of a message, determine the
* NSEC3 parameters (hash algorithm, iterations, and salt) present. If there
* is more than one distinct grouping, return null;
*
*
* @param nsec3s
* A list of NSEC3Record object.
* @return A set containing a number of objects (NSEC3Parameter objects)
@ -88,9 +87,9 @@ public class NSEC3ValUtils {
return null;
}
NSEC3Parameters params = new NSEC3Parameters((NSEC3Record) nsec3s.get(
0));
ByteArrayComparator bac = new ByteArrayComparator();
NSEC3Parameters params = new NSEC3Parameters((NSEC3Record) nsec3s
.get(0));
ByteArrayComparator bac = new ByteArrayComparator();
for (NSEC3Record nsec3 : nsec3s) {
if (!params.match(nsec3, bac)) {
@ -103,14 +102,14 @@ public class NSEC3ValUtils {
/**
* Given a hash and an a zone name, construct an NSEC3 ownername.
*
*
* @param hash
* The hash of an original name.
* @param zonename
* The zone to use in constructing the NSEC3 name.
* @return The NSEC3 name.
*/
private static Name hashName(byte [] hash, Name zonename) {
private static Name hashName(byte[] hash, Name zonename) {
try {
return new Name(b32.toString(hash).toLowerCase(), zonename);
} catch (TextParseException e) {
@ -121,14 +120,14 @@ public class NSEC3ValUtils {
/**
* Given a set of NSEC3 parameters, hash a name.
*
*
* @param name
* The name to hash.
* @param params
* The parameters to hash with.
* @return The hash.
*/
private static byte [] hash(Name name, NSEC3Parameters params) {
private static byte[] hash(Name name, NSEC3Parameters params) {
try {
return params.hash(name);
} catch (NoSuchAlgorithmException e) {
@ -142,7 +141,8 @@ public class NSEC3ValUtils {
try {
return nsec3.hashName(name);
} catch (NoSuchAlgorithmException e) {
st_log.warn("Did not recognize hash algorithm: " + nsec3.getHashAlgorithm());
st_log.warn("Did not recognize hash algorithm: "
+ nsec3.getHashAlgorithm());
return null;
}
@ -150,7 +150,7 @@ public class NSEC3ValUtils {
/**
* Given the name of a closest encloser, return the name *.closest_encloser.
*
*
* @param closestEncloser
* The name to start with.
* @return The wildcard name.
@ -169,7 +169,7 @@ public class NSEC3ValUtils {
* Given a qname and its proven closest encloser, calculate the "next
* closest" name. Basically, this is the name that is one label longer than
* the closest encloser that is still a subdomain of qname.
*
*
* @param qname
* The qname.
* @param closestEncloser
@ -184,7 +184,7 @@ public class NSEC3ValUtils {
/**
* Find the NSEC3Record that matches a hash of a name.
*
*
* @param hash
* The pre-calculated hash of a name.
* @param zonename
@ -196,12 +196,12 @@ public class NSEC3ValUtils {
* @param bac
* An already allocated ByteArrayComparator, for reuse. This may
* be null.
*
*
* @return The matching NSEC3Record, if one is present.
*/
private static NSEC3Record findMatchingNSEC3(byte [] hash, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac) {
private static NSEC3Record findMatchingNSEC3(byte[] hash, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac) {
Name n = hashName(hash, zonename);
for (NSEC3Record nsec3 : nsec3s) {
@ -222,7 +222,7 @@ public class NSEC3ValUtils {
* Given a hash and a candidate NSEC3Record, determine if that NSEC3Record
* covers the hash. Covers specifically means that the hash is in between
* the owner and next hashes and does not equal either.
*
*
* @param nsec3
* The candidate NSEC3Record.
* @param hash
@ -231,10 +231,10 @@ public class NSEC3ValUtils {
* An already allocated comparator. This may be null.
* @return True if the NSEC3Record covers the hash.
*/
private static boolean nsec3Covers(NSEC3Record nsec3, byte [] hash,
ByteArrayComparator bac) {
byte [] owner = hash(nsec3.getName(), nsec3);
byte [] next = nsec3.getNext();
private static boolean nsec3Covers(NSEC3Record nsec3, byte[] hash,
ByteArrayComparator bac) {
byte[] owner = hash(nsec3.getName(), nsec3);
byte[] next = nsec3.getNext();
// This is the "normal case: owner < next and owner < hash < next
if ((bac.compare(owner, hash) < 0) && (bac.compare(hash, next) < 0)) {
@ -243,9 +243,8 @@ public class NSEC3ValUtils {
// this is the end of zone case: next < owner && hash > owner || hash <
// next
if ((bac.compare(next, owner) <= 0) &&
((bac.compare(hash, next) < 0) ||
(bac.compare(owner, hash) < 0))) {
if ((bac.compare(next, owner) <= 0)
&& ((bac.compare(hash, next) < 0) || (bac.compare(owner, hash) < 0))) {
return true;
}
@ -256,7 +255,7 @@ public class NSEC3ValUtils {
/**
* Given a pre-hashed name, find a covering NSEC3 from among a list of
* NSEC3s.
*
*
* @param hash
* The hash to consider.
* @param zonename
@ -266,12 +265,12 @@ public class NSEC3ValUtils {
* @param params
* The NSEC3 parameters used to generate the hash -- NSEC3s that
* do not use those parameters will be skipped.
*
*
* @return A covering NSEC3 if one is present, null otherwise.
*/
private static NSEC3Record findCoveringNSEC3(byte [] hash, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac) {
private static NSEC3Record findCoveringNSEC3(byte[] hash, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac) {
ByteArrayComparator comparator = new ByteArrayComparator();
for (NSEC3Record nsec3 : nsec3s) {
@ -291,7 +290,7 @@ public class NSEC3ValUtils {
* Given a name and a list of NSEC3s, find the candidate closest encloser.
* This will be the first ancestor of 'name' (including itself) to have a
* matching NSEC3 RR.
*
*
* @param name
* The name the start with.
* @param zonename
@ -302,14 +301,14 @@ public class NSEC3ValUtils {
* The NSEC3 parameters.
* @param bac
* A pre-allocated comparator. May be null.
*
*
* @return A CEResponse containing the closest encloser name and the NSEC3
* RR that matched it, or null if there wasn't one.
*/
private static CEResponse findClosestEncloser(Name name, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac) {
Name n = name;
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac) {
Name n = name;
NSEC3Record nsec3;
@ -318,8 +317,8 @@ public class NSEC3ValUtils {
// FIXME: modify so that the NSEC3 matching the zone apex need not be
// present.
while (n.labels() >= zonename.labels()) {
nsec3 = findMatchingNSEC3(hash(n, params), zonename,
nsec3s, params, bac);
nsec3 = findMatchingNSEC3(hash(n, params), zonename, nsec3s,
params, bac);
if (nsec3 != null) {
return new CEResponse(n, nsec3);
@ -333,7 +332,7 @@ public class NSEC3ValUtils {
/**
* Given a List of nsec3 RRs, find and prove the closest encloser to qname.
*
*
* @param qname
* The qname in question.
* @param zonename
@ -352,21 +351,22 @@ public class NSEC3ValUtils {
* that matches it.
*/
private static CEResponse proveClosestEncloser(Name qname, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac, boolean proveDoesNotExist) {
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac, boolean proveDoesNotExist) {
CEResponse candidate = findClosestEncloser(qname, zonename, nsec3s,
params, bac);
if (candidate == null) {
st_log.debug("proveClosestEncloser: could not find a " +
"candidate for the closest encloser.");
st_log.debug("proveClosestEncloser: could not find a "
+ "candidate for the closest encloser.");
return null;
}
if (candidate.closestEncloser.equals(qname)) {
if (proveDoesNotExist) {
st_log.debug("proveClosestEncloser: proved that qname existed!");
st_log
.debug("proveClosestEncloser: proved that qname existed!");
return null;
}
@ -380,10 +380,10 @@ public class NSEC3ValUtils {
// should have been a referral. If it is a DNAME, then it should have
// been
// a DNAME response.
if (candidate.ce_nsec3.hasType(Type.NS) &&
!candidate.ce_nsec3.hasType(Type.SOA)) {
st_log.debug("proveClosestEncloser: closest encloser " +
"was a delegation!");
if (candidate.ce_nsec3.hasType(Type.NS)
&& !candidate.ce_nsec3.hasType(Type.SOA)) {
st_log.debug("proveClosestEncloser: closest encloser "
+ "was a delegation!");
return null;
}
@ -395,15 +395,15 @@ public class NSEC3ValUtils {
}
// Otherwise, we need to show that the next closer name is covered.
Name nextClosest = nextClosest(qname, candidate.closestEncloser);
Name nextClosest = nextClosest(qname, candidate.closestEncloser);
byte [] nc_hash = hash(nextClosest, params);
candidate.nc_nsec3 = findCoveringNSEC3(nc_hash, zonename, nsec3s,
byte[] nc_hash = hash(nextClosest, params);
candidate.nc_nsec3 = findCoveringNSEC3(nc_hash, zonename, nsec3s,
params, bac);
if (candidate.nc_nsec3 == null) {
st_log.debug("Could not find proof that the " +
"closest encloser was the closest encloser");
st_log.debug("Could not find proof that the "
+ "closest encloser was the closest encloser");
return null;
}
@ -413,41 +413,41 @@ public class NSEC3ValUtils {
private static int maxIterations(int baseAlg, int keysize) {
switch (baseAlg) {
case DnsSecVerifier.RSA:
case DnsSecVerifier.RSA:
if (keysize == 0) {
return 2500; // the max at 4096
}
if (keysize == 0) {
return 2500; // the max at 4096
}
if (keysize > 2048) {
return 2500;
}
if (keysize > 2048) {
return 2500;
}
if (keysize > 1024) {
return 500;
}
if (keysize > 1024) {
return 500;
}
if (keysize > 0) {
return 150;
}
if (keysize > 0) {
return 150;
}
break;
break;
case DnsSecVerifier.DSA:
case DnsSecVerifier.DSA:
if (keysize == 0) {
return 5000; // the max at 2048;
}
if (keysize == 0) {
return 5000; // the max at 2048;
}
if (keysize > 1024) {
return 5000;
}
if (keysize > 1024) {
return 5000;
}
if (keysize > 0) {
return 1500;
}
if (keysize > 0) {
return 1500;
}
break;
break;
}
return -1;
@ -455,17 +455,16 @@ public class NSEC3ValUtils {
@SuppressWarnings("unchecked")
private static boolean validIterations(NSEC3Parameters nsec3params,
RRset dnskey_rrset, DnsSecVerifier verifier) {
RRset dnskey_rrset, DnsSecVerifier verifier) {
// for now, we return the maximum iterations based simply on the key
// algorithms that may have been used to sign the NSEC3 RRsets.
int max_iterations = 0;
for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) {
DNSKEYRecord dnskey = (DNSKEYRecord) i.next();
int baseAlg = verifier.baseAlgorithm(dnskey.getAlgorithm());
int iters = maxIterations(baseAlg, 0);
max_iterations = (max_iterations < iters) ? iters
: max_iterations;
DNSKEYRecord dnskey = (DNSKEYRecord) i.next();
int baseAlg = verifier.baseAlgorithm(dnskey.getAlgorithm());
int iters = maxIterations(baseAlg, 0);
max_iterations = (max_iterations < iters) ? iters : max_iterations;
}
if (nsec3params.iterations > max_iterations) {
@ -479,7 +478,7 @@ public class NSEC3ValUtils {
* Determine if all of the NSEC3s in a response are legally ignoreable
* (i.e., their presence should lead to an INSECURE result). Currently, this
* is solely based on iterations.
*
*
* @param nsec3s
* The list of NSEC3s. If there is more than one set of NSEC3
* parameters present, this test will not be performed.
@ -491,7 +490,7 @@ public class NSEC3ValUtils {
* @return true if all of the NSEC3s can be legally ignored, false if not.
*/
public static boolean allNSEC3sIgnoreable(List<NSEC3Record> nsec3s,
RRset dnskey_rrset, DnsSecVerifier verifier) {
RRset dnskey_rrset, DnsSecVerifier verifier) {
NSEC3Parameters params = nsec3Parameters(nsec3s);
if (params == null) {
@ -506,7 +505,7 @@ public class NSEC3ValUtils {
* ERROR. This means that the NSEC3s prove a) the closest encloser exists,
* b) the direct child of the closest encloser towards qname doesn't exist,
* and c) *.closest encloser does not exist.
*
*
* @param nsec3s
* The list of NSEC3s.
* @param qname
@ -520,7 +519,7 @@ public class NSEC3ValUtils {
* ignored.
*/
public static boolean proveNameError(List<NSEC3Record> nsec3s, Name qname,
Name zonename) {
Name zonename) {
if ((nsec3s == null) || (nsec3s.size() == 0)) {
return false;
}
@ -528,8 +527,8 @@ public class NSEC3ValUtils {
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
if (nsec3params == null) {
st_log.debug("Could not find a single set of " +
"NSEC3 parameters (multiple parameters present).");
st_log.debug("Could not find a single set of "
+ "NSEC3 parameters (multiple parameters present).");
return false;
}
@ -550,14 +549,14 @@ public class NSEC3ValUtils {
// At this point, we know that qname does not exist. Now we need to
// prove
// that the wildcard does not exist.
Name wc = ceWildcard(ce.closestEncloser);
byte [] wc_hash = hash(wc, nsec3params);
NSEC3Record nsec3 = findCoveringNSEC3(wc_hash, zonename, nsec3s,
Name wc = ceWildcard(ce.closestEncloser);
byte[] wc_hash = hash(wc, nsec3params);
NSEC3Record nsec3 = findCoveringNSEC3(wc_hash, zonename, nsec3s,
nsec3params, bac);
if (nsec3 == null) {
st_log.debug("proveNameError: could not prove that the " +
"applicable wildcard did not exist.");
st_log.debug("proveNameError: could not prove that the "
+ "applicable wildcard did not exist.");
return false;
}
@ -568,23 +567,23 @@ public class NSEC3ValUtils {
/**
* Determine if the NSEC3s provided in a response prove the NOERROR/NODATA
* status. There are a number of different variants to this:
*
*
* 1) Normal NODATA -- qname is matched to an NSEC3 record, type is not
* present.
*
*
* 2) ENT NODATA -- because there must be NSEC3 record for
* empty-non-terminals, this is the same as #1.
*
*
* 3) NSEC3 ownername NODATA -- qname matched an existing, lone NSEC3
* ownername, but qtype was not NSEC3. NOTE: as of nsec-05, this case no
* longer exists.
*
*
* 4) Wildcard NODATA -- A wildcard matched the name, but not the type.
*
*
* 5) Opt-In DS NODATA -- the qname is covered by an opt-in span and qtype
* == DS. (or maybe some future record with the same parent-side-only
* property)
*
*
* @param nsec3s
* The NSEC3Records to consider.
* @param qname
@ -596,7 +595,7 @@ public class NSEC3ValUtils {
* @return true if the NSEC3s prove the proposition.
*/
public static boolean proveNodata(List<NSEC3Record> nsec3s, Name qname,
int qtype, Name zonename) {
int qtype, Name zonename) {
if ((nsec3s == null) || (nsec3s.size() == 0)) {
return false;
}
@ -604,29 +603,29 @@ public class NSEC3ValUtils {
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
if (nsec3params == null) {
st_log.debug("could not find a single set of " +
"NSEC3 parameters (multiple parameters present)");
st_log.debug("could not find a single set of "
+ "NSEC3 parameters (multiple parameters present)");
return false;
}
ByteArrayComparator bac = new ByteArrayComparator();
ByteArrayComparator bac = new ByteArrayComparator();
NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params),
NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params),
zonename, nsec3s, nsec3params, bac);
// Cases 1 & 2.
if (nsec3 != null) {
if (nsec3.hasType(qtype)) {
st_log.debug(
"proveNodata: Matching NSEC3 proved that type existed!");
st_log
.debug("proveNodata: Matching NSEC3 proved that type existed!");
return false;
}
if (nsec3.hasType(Type.CNAME)) {
st_log.debug("proveNodata: Matching NSEC3 proved " +
"that a CNAME existed!");
st_log.debug("proveNodata: Matching NSEC3 proved "
+ "that a CNAME existed!");
return false;
}
@ -643,8 +642,8 @@ public class NSEC3ValUtils {
// At this point, not finding a match or a proven closest encloser is a
// problem.
if (ce == null) {
st_log.debug("proveNodata: did not match qname, " +
"nor found a proven closest encloser.");
st_log.debug("proveNodata: did not match qname, "
+ "nor found a proven closest encloser.");
return false;
}
@ -668,16 +667,17 @@ public class NSEC3ValUtils {
// Case 5.
if (qtype != Type.DS) {
st_log.debug("proveNodata: could not find matching NSEC3, " +
"nor matching wildcard, and qtype is not DS -- no more options.");
st_log
.debug("proveNodata: could not find matching NSEC3, "
+ "nor matching wildcard, and qtype is not DS -- no more options.");
return false;
}
// We need to make sure that the covering NSEC3 is opt-in.
if (!isOptOut(ce.nc_nsec3)) {
st_log.debug("proveNodata: covering NSEC3 was not " +
"opt-in in an opt-in DS NOERROR/NODATA case.");
st_log.debug("proveNodata: covering NSEC3 was not "
+ "opt-in in an opt-in DS NOERROR/NODATA case.");
return false;
}
@ -688,7 +688,7 @@ public class NSEC3ValUtils {
/**
* Prove that a positive wildcard match was appropriate (no direct match
* RRset).
*
*
* @param nsec3s
* The NSEC3 records to work with.
* @param qname
@ -700,7 +700,7 @@ public class NSEC3ValUtils {
* @return true if the NSEC3 records prove this case.
*/
public static boolean proveWildcard(List<NSEC3Record> nsec3s, Name qname,
Name zonename, Name wildcard) {
Name zonename, Name wildcard) {
if ((nsec3s == null) || (nsec3s.size() == 0)) {
return false;
}
@ -712,8 +712,8 @@ public class NSEC3ValUtils {
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
if (nsec3params == null) {
st_log.debug(
"couldn't find a single set of NSEC3 parameters (multiple parameters present).");
st_log
.debug("couldn't find a single set of NSEC3 parameters (multiple parameters present).");
return false;
}
@ -732,10 +732,10 @@ public class NSEC3ValUtils {
zonename, nsec3s, nsec3params, bac);
if (candidate.nc_nsec3 == null) {
st_log.debug("proveWildcard: did not find a covering NSEC3 " +
"that covered the next closer name to " + qname + " from " +
candidate.closestEncloser + " (derived from wildcard " +
wildcard + ")");
st_log.debug("proveWildcard: did not find a covering NSEC3 "
+ "that covered the next closer name to " + qname
+ " from " + candidate.closestEncloser
+ " (derived from wildcard " + wildcard + ")");
return false;
}
@ -745,16 +745,16 @@ public class NSEC3ValUtils {
/**
* Prove that a DS response either had no DS, or wasn't a delegation point.
*
*
* Fundamentally there are two cases here: normal NODATA and Opt-In NODATA.
*
*
* @param nsec3s
* The NSEC3 RRs to examine.
* @param qname
* The name of the DS in question.
* @param zonename
* The name of the zone that the NSEC3 RRs come from.
*
*
* @return SecurityStatus.SECURE if it was proven that there is no DS in a
* secure (i.e., not opt-in) way, SecurityStatus.INSECURE if there
* was no DS in an insecure (i.e., opt-in) way,
@ -763,7 +763,7 @@ public class NSEC3ValUtils {
* work out.
*/
public static byte proveNoDS(List<NSEC3Record> nsec3s, Name qname,
Name zonename) {
Name zonename) {
if ((nsec3s == null) || (nsec3s.size() == 0)) {
return SecurityStatus.BOGUS;
}
@ -771,8 +771,8 @@ public class NSEC3ValUtils {
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
if (nsec3params == null) {
st_log.debug("couldn't find a single set of " +
"NSEC3 parameters (multiple parameters present).");
st_log.debug("couldn't find a single set of "
+ "NSEC3 parameters (multiple parameters present).");
return SecurityStatus.BOGUS;
}
@ -824,18 +824,18 @@ public class NSEC3ValUtils {
* algorithm, iterations, and salt.
*/
private static class NSEC3Parameters {
public int alg;
public byte [] salt;
public int iterations;
public int alg;
public byte[] salt;
public int iterations;
private NSEC3PARAMRecord nsec3paramrec;
public NSEC3Parameters(NSEC3Record r) {
alg = r.getHashAlgorithm();
salt = r.getSalt();
iterations = r.getIterations();
alg = r.getHashAlgorithm();
salt = r.getSalt();
iterations = r.getIterations();
nsec3paramrec = new NSEC3PARAMRecord(Name.root, DClass.IN, 0,
alg, 0, iterations, salt);
nsec3paramrec = new NSEC3PARAMRecord(Name.root, DClass.IN, 0, alg,
0, iterations, salt);
}
public boolean match(NSEC3Record r, ByteArrayComparator bac) {
@ -872,13 +872,13 @@ public class NSEC3ValUtils {
* encloser proof.
*/
private static class CEResponse {
public Name closestEncloser;
public Name closestEncloser;
public NSEC3Record ce_nsec3;
public NSEC3Record nc_nsec3;
public CEResponse(Name ce, NSEC3Record nsec3) {
this.closestEncloser = ce;
this.ce_nsec3 = nsec3;
this.closestEncloser = ce;
this.ce_nsec3 = nsec3;
}
}
}

View File

@ -27,23 +27,22 @@ import org.xbill.DNS.*;
import java.util.*;
/**
* This class represents a DNS message with resolver/validator state.
*/
public class SMessage {
private static SRRset [] empty_srrset_array = new SRRset[0];
private Header mHeader;
private Record mQuestion;
private OPTRecord mOPTRecord;
private List<SRRset> [] mSection;
private SecurityStatus mSecurityStatus;
private static SRRset[] empty_srrset_array = new SRRset[0];
private Header mHeader;
private Record mQuestion;
private OPTRecord mOPTRecord;
private List<SRRset>[] mSection;
private SecurityStatus mSecurityStatus;
@SuppressWarnings("unchecked")
public SMessage(Header h) {
mSection = (List<SRRset> []) new List[3];
mHeader = h;
mSecurityStatus = new SecurityStatus();
mSection = (List<SRRset>[]) new List[3];
mHeader = h;
mSecurityStatus = new SecurityStatus();
}
public SMessage(int id) {
@ -56,11 +55,11 @@ public class SMessage {
public SMessage(Message m) {
this(m.getHeader());
mQuestion = m.getQuestion();
mOPTRecord = m.getOPT();
mQuestion = m.getQuestion();
mOPTRecord = m.getOPT();
for (int i = Section.ANSWER; i <= Section.ADDITIONAL; i++) {
RRset [] rrsets = m.getSectionRRsets(i);
RRset[] rrsets = m.getSectionRRsets(i);
for (int j = 0; j < rrsets.length; j++) {
addRRset(rrsets[j], i);
@ -151,13 +150,13 @@ public class SMessage {
sectionList.addAll(0, rrsets);
}
public SRRset [] getSectionRRsets(int section) {
public SRRset[] getSectionRRsets(int section) {
List<SRRset> slist = getSectionList(section);
return (SRRset []) slist.toArray(empty_srrset_array);
return (SRRset[]) slist.toArray(empty_srrset_array);
}
public SRRset [] getSectionRRsets(int section, int qtype) {
public SRRset[] getSectionRRsets(int section, int qtype) {
List<SRRset> slist = getSectionList(section);
if (slist.size() == 0) {
@ -172,7 +171,7 @@ public class SMessage {
}
}
return (SRRset []) result.toArray(empty_srrset_array);
return (SRRset[]) result.toArray(empty_srrset_array);
}
public void deleteRRset(SRRset rrset, int section) {
@ -314,7 +313,7 @@ public class SMessage {
/**
* Find a specific (S)RRset in a given section.
*
*
* @param name
* the name of the RRset.
* @param type
@ -323,7 +322,7 @@ public class SMessage {
* the class of the RRset.
* @param section
* the section to look in (ANSWER -> ADDITIONAL)
*
*
* @return The SRRset if found, null otherwise.
*/
public SRRset findRRset(Name name, int type, int dclass, int section) {
@ -331,12 +330,12 @@ public class SMessage {
throw new IllegalArgumentException("Invalid section.");
}
SRRset [] rrsets = getSectionRRsets(section);
SRRset[] rrsets = getSectionRRsets(section);
for (int i = 0; i < rrsets.length; i++) {
if (rrsets[i].getName().equals(name) &&
(rrsets[i].getType() == type) &&
(rrsets[i].getDClass() == dclass)) {
if (rrsets[i].getName().equals(name)
&& (rrsets[i].getType() == type)
&& (rrsets[i].getDClass() == dclass)) {
return rrsets[i];
}
}
@ -347,32 +346,32 @@ public class SMessage {
/**
* Find an "answer" RRset. This will look for RRsets in the ANSWER section
* that match the <qname,qtype,qclass>, taking into consideration CNAMEs.
*
*
* @param qname
* The starting search name.
* @param qtype
* The search type.
* @param qclass
* The search class.
*
*
* @return a SRRset matching the query. This SRRset may have a different
* name from qname, due to following a CNAME chain.
*/
public SRRset findAnswerRRset(Name qname, int qtype, int qclass) {
SRRset [] srrsets = getSectionRRsets(Section.ANSWER);
SRRset[] srrsets = getSectionRRsets(Section.ANSWER);
for (int i = 0; i < srrsets.length; i++) {
if (srrsets[i].getName().equals(qname) &&
(srrsets[i].getType() == Type.CNAME)) {
if (srrsets[i].getName().equals(qname)
&& (srrsets[i].getType() == Type.CNAME)) {
CNAMERecord cname = (CNAMERecord) srrsets[i].first();
qname = cname.getTarget();
continue;
}
if (srrsets[i].getName().equals(qname) &&
(srrsets[i].getType() == qtype) &&
(srrsets[i].getDClass() == qclass)) {
if (srrsets[i].getName().equals(qname)
&& (srrsets[i].getType() == qtype)
&& (srrsets[i].getDClass() == qclass)) {
return srrsets[i];
}
}

View File

@ -27,7 +27,6 @@ import org.xbill.DNS.*;
import java.util.*;
/**
* A version of the RRset class overrides the standard security status.
*/

View File

@ -23,10 +23,9 @@
package com.verisign.tat.dnssec;
/**
* Codes for DNSSEC security statuses.
*
*
* @author davidb
*/
public class SecurityStatus {
@ -70,7 +69,7 @@ public class SecurityStatus {
private byte status;
public SecurityStatus() {
status = UNCHECKED;
status = UNCHECKED;
}
public SecurityStatus(byte status) {
@ -79,26 +78,26 @@ public class SecurityStatus {
public static String string(int status) {
switch (status) {
case INVALID:
return "Invalid";
case INVALID:
return "Invalid";
case BOGUS:
return "Bogus";
case BOGUS:
return "Bogus";
case SECURE:
return "Secure";
case SECURE:
return "Secure";
case INSECURE:
return "Insecure";
case INSECURE:
return "Insecure";
case INDETERMINATE:
return "Indeterminate";
case INDETERMINATE:
return "Indeterminate";
case UNCHECKED:
return "Unchecked";
case UNCHECKED:
return "Unchecked";
default:
return "UNKNOWN";
default:
return "UNKNOWN";
}
}

View File

@ -46,25 +46,24 @@ import java.util.Comparator;
import java.util.Date;
import java.util.Iterator;
/**
* This class contains a bunch of utility methods that are generally useful in
* signing and verifying rrsets.
*/
public class SignUtils {
// private static final int DSA_SIGNATURE_LENGTH = 20;
private static final int ASN1_INT = 0x02;
private static final int ASN1_SEQ = 0x30;
public static final int RR_NORMAL = 0;
public static final int RR_DELEGATION = 1;
public static final int RR_GLUE = 2;
public static final int RR_INVALID = 3;
private static Logger log = Logger.getLogger(SignUtils.class);
private static final int ASN1_INT = 0x02;
private static final int ASN1_SEQ = 0x30;
public static final int RR_NORMAL = 0;
public static final int RR_DELEGATION = 1;
public static final int RR_GLUE = 2;
public static final int RR_INVALID = 3;
private static Logger log = Logger.getLogger(SignUtils.class);
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
*
* @param rrset
* the RRset being signed.
* @param signer
@ -82,16 +81,16 @@ public class SignUtils {
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, Name signer,
int alg, int keyid, Date start, Date expire, long sig_ttl) {
int alg, int keyid, Date start, Date expire, long sig_ttl) {
return new RRSIGRecord(rrset.getName(), rrset.getDClass(), sig_ttl,
rrset.getType(), alg, rrset.getTTL(), expire, start, keyid, signer,
null);
rrset.getType(), alg, rrset.getTTL(), expire, start, keyid,
signer, null);
}
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
*
* @param rrset
* the RRset being signed.
* @param key
@ -106,15 +105,15 @@ public class SignUtils {
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, DNSKEYRecord key,
Date start, Date expire, long sig_ttl) {
return generatePreRRSIG(rrset, key.getName(), key.getAlgorithm(),
key.getFootprint(), start, expire, sig_ttl);
Date start, Date expire, long sig_ttl) {
return generatePreRRSIG(rrset, key.getName(), key.getAlgorithm(), key
.getFootprint(), start, expire, sig_ttl);
}
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
*
* @param rec
* the DNS record being signed (forming an entire RRset).
* @param key
@ -128,28 +127,28 @@ public class SignUtils {
* @return a prototype signature based on the Record and key information.
*/
public static RRSIGRecord generatePreRRSIG(Record rec, DNSKEYRecord key,
Date start, Date expire, long sig_ttl) {
return new RRSIGRecord(rec.getName(), rec.getDClass(), sig_ttl,
rec.getType(), key.getAlgorithm(), rec.getTTL(), expire, start,
key.getFootprint(), key.getName(), null);
Date start, Date expire, long sig_ttl) {
return new RRSIGRecord(rec.getName(), rec.getDClass(), sig_ttl, rec
.getType(), key.getAlgorithm(), rec.getTTL(), expire, start,
key.getFootprint(), key.getName(), null);
}
/**
* Generate the binary image of the prototype SIG RR.
*
*
* @param presig
* the SIG RR prototype.
* @return the RDATA portion of the prototype SIG record. This forms the
* first part of the data to be signed.
*/
private static byte [] generatePreSigRdata(RRSIGRecord presig) {
private static byte[] generatePreSigRdata(RRSIGRecord presig) {
// Generate the binary image;
DNSOutput image = new DNSOutput();
// precalculate some things
int start_time = (int) (presig.getTimeSigned().getTime() / 1000);
int expire_time = (int) (presig.getExpire().getTime() / 1000);
Name signer = presig.getSigner();
int start_time = (int) (presig.getTimeSigned().getTime() / 1000);
int expire_time = (int) (presig.getExpire().getTime() / 1000);
Name signer = presig.getSigner();
// first write out the partial SIG record (this is the SIG RDATA
// minus the actual signature.
@ -167,7 +166,7 @@ public class SignUtils {
/**
* Calculate the canonical wire line format of the RRset.
*
*
* @param rrset
* the RRset to convert.
* @param ttl
@ -180,8 +179,8 @@ public class SignUtils {
* part of data to be signed.
*/
@SuppressWarnings("unchecked")
public static byte [] generateCanonicalRRsetData(RRset rrset, long ttl,
int labels) {
public static byte[] generateCanonicalRRsetData(RRset rrset, long ttl,
int labels) {
DNSOutput image = new DNSOutput();
if (ttl == 0) {
@ -200,15 +199,15 @@ public class SignUtils {
boolean wildcardName = false;
if (n.labels() != labels) {
n = n.wild(n.labels() - labels);
wildcardName = true;
log.trace("Detected wildcard expansion: " + rrset.getName() +
" changed to " + n);
n = n.wild(n.labels() - labels);
wildcardName = true;
log.trace("Detected wildcard expansion: " + rrset.getName()
+ " changed to " + n);
}
// now convert the wire format records in the RRset into a
// list of byte arrays.
ArrayList<byte []> canonical_rrs = new ArrayList<byte []>();
ArrayList<byte[]> canonical_rrs = new ArrayList<byte[]>();
for (Iterator i = rrset.rrs(); i.hasNext();) {
Record r = (Record) i.next();
@ -218,25 +217,24 @@ public class SignUtils {
// or ownername.
// In the TTL case, this avoids changing the ttl in the
// response.
r = Record.newRecord(n, r.getType(), r.getDClass(), ttl,
r.rdataToWireCanonical());
r = Record.newRecord(n, r.getType(), r.getDClass(), ttl, r
.rdataToWireCanonical());
}
byte [] wire_fmt = r.toWireCanonical();
byte[] wire_fmt = r.toWireCanonical();
canonical_rrs.add(wire_fmt);
}
// put the records into the correct ordering.
// Calculate the offset where the RDATA begins (we have to skip
// past the length byte)
int offset = rrset.getName().toWireCanonical().length +
10;
ByteArrayComparator bac = new ByteArrayComparator(offset, false);
int offset = rrset.getName().toWireCanonical().length + 10;
ByteArrayComparator bac = new ByteArrayComparator(offset, false);
Collections.sort(canonical_rrs, bac);
for (Iterator<byte []> i = canonical_rrs.iterator(); i.hasNext();) {
byte [] wire_fmt_rec = i.next();
for (Iterator<byte[]> i = canonical_rrs.iterator(); i.hasNext();) {
byte[] wire_fmt_rec = i.next();
image.writeByteArray(wire_fmt_rec);
}
@ -246,17 +244,17 @@ public class SignUtils {
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
*
* @param rrset
* the RRset to be signed.
* @param presig
* a prototype SIG RR created using the same RRset.
* @return a block of data ready to be signed.
*/
public static byte [] generateSigData(RRset rrset, RRSIGRecord presig)
throws IOException {
byte [] rrset_data = generateCanonicalRRsetData(rrset,
presig.getOrigTTL(), presig.getLabels());
public static byte[] generateSigData(RRset rrset, RRSIGRecord presig)
throws IOException {
byte[] rrset_data = generateCanonicalRRsetData(rrset, presig
.getOrigTTL(), presig.getLabels());
return generateSigData(rrset_data, presig);
}
@ -264,7 +262,7 @@ public class SignUtils {
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
*
* @param rrset_data
* the RRset converted into canonical wire line format (as per
* the canonicalization rules in RFC 2535).
@ -273,12 +271,12 @@ public class SignUtils {
* <code>rrset_data</code>.
* @return a block of data ready to be signed.
*/
public static byte [] generateSigData(byte [] rrset_data, RRSIGRecord presig)
throws IOException {
byte [] sig_rdata = generatePreSigRdata(presig);
public static byte[] generateSigData(byte[] rrset_data, RRSIGRecord presig)
throws IOException {
byte[] sig_rdata = generatePreSigRdata(presig);
ByteArrayOutputStream image = new ByteArrayOutputStream(sig_rdata.length +
rrset_data.length);
ByteArrayOutputStream image = new ByteArrayOutputStream(
sig_rdata.length + rrset_data.length);
image.write(sig_rdata);
image.write(rrset_data);
@ -289,33 +287,33 @@ public class SignUtils {
/**
* Given the actual signature and the prototype signature, combine them and
* return the fully formed RRSIGRecord.
*
*
* @param signature
* the cryptographic signature, in DNSSEC format.
* @param presig
* the prototype RRSIG RR to add the signature to.
* @return the fully formed RRSIG RR.
*/
public static RRSIGRecord generateRRSIG(byte [] signature,
RRSIGRecord presig) {
return new RRSIGRecord(presig.getName(), presig.getDClass(),
presig.getTTL(), presig.getTypeCovered(), presig.getAlgorithm(),
presig.getOrigTTL(), presig.getExpire(), presig.getTimeSigned(),
presig.getFootprint(), presig.getSigner(), signature);
public static RRSIGRecord generateRRSIG(byte[] signature, RRSIGRecord presig) {
return new RRSIGRecord(presig.getName(), presig.getDClass(), presig
.getTTL(), presig.getTypeCovered(), presig.getAlgorithm(),
presig.getOrigTTL(), presig.getExpire(),
presig.getTimeSigned(), presig.getFootprint(), presig
.getSigner(), signature);
}
/**
* Converts from a RFC 2536 formatted DSA signature to a JCE (ASN.1)
* formatted signature.
*
*
* <p>
* ASN.1 format = ASN1_SEQ . seq_length . ASN1_INT . Rlength . R . ANS1_INT
* . Slength . S
* </p>
*
*
* The integers R and S may have a leading null byte to force the integer
* positive.
*
*
* @param signature
* the RFC 2536 formatted DSA signature.
* @return The ASN.1 formatted DSA signature.
@ -323,11 +321,11 @@ public class SignUtils {
* if there was something wrong with the RFC 2536 formatted
* signature.
*/
public static byte [] convertDSASignature(byte [] signature)
throws SignatureException {
public static byte[] convertDSASignature(byte[] signature)
throws SignatureException {
if (signature.length != 41) {
throw new SignatureException(
"RFC 2536 signature not expected length.");
"RFC 2536 signature not expected length.");
}
byte r_pad = 0;
@ -345,15 +343,15 @@ public class SignUtils {
// ASN.1 length = R length + S length + (2 + 2 + 2), where each 2
// is for a ASN.1 type-length byte pair of which there are three
// (SEQ, INT, INT).
byte sig_length = (byte) (40 + r_pad + s_pad + 6);
byte sig_length = (byte) (40 + r_pad + s_pad + 6);
byte [] sig = new byte[sig_length];
byte pos = 0;
byte[] sig = new byte[sig_length];
byte pos = 0;
sig[pos++] = ASN1_SEQ;
sig[pos++] = (byte) (sig_length - 2); // all but the SEQ type+length.
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + r_pad);
sig[pos++] = ASN1_SEQ;
sig[pos++] = (byte) (sig_length - 2); // all but the SEQ type+length.
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + r_pad);
// copy the value of R, leaving a null byte if necessary
if (r_pad == 1) {
@ -363,8 +361,8 @@ public class SignUtils {
System.arraycopy(signature, 1, sig, pos, 20);
pos += 20;
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + s_pad);
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + s_pad);
// copy the value of S, leaving a null byte if necessary
if (s_pad == 1) {
@ -379,15 +377,15 @@ public class SignUtils {
/**
* Converts from a JCE (ASN.1) formatted DSA signature to a RFC 2536
* compliant signature.
*
*
* <p>
* rfc2536 format = T . R . S
* </p>
*
*
* where T is a number between 0 and 8, which is based on the DSA key
* length, and R & S are formatted to be exactly 20 bytes each (no leading
* null bytes).
*
*
* @param params
* the DSA parameters associated with the DSA key used to
* generate the signature.
@ -397,25 +395,25 @@ public class SignUtils {
* @throws SignatureException
* if something is wrong with the ASN.1 format.
*/
public static byte [] convertDSASignature(DSAParams params,
byte [] signature) throws SignatureException {
public static byte[] convertDSASignature(DSAParams params, byte[] signature)
throws SignatureException {
if ((signature[0] != ASN1_SEQ) || (signature[2] != ASN1_INT)) {
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT");
"Invalid ASN.1 signature format: expected SEQ, INT");
}
byte r_pad = (byte) (signature[3] - 20);
if (signature[24 + r_pad] != ASN1_INT) {
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT, INT");
"Invalid ASN.1 signature format: expected SEQ, INT, INT");
}
log.trace("(start) ASN.1 DSA Sig:\n" + base64.toString(signature));
byte s_pad = (byte) (signature[25 + r_pad] - 20);
byte s_pad = (byte) (signature[25 + r_pad] - 20);
byte [] sig = new byte[41]; // all rfc2536 signatures are 41 bytes.
byte[] sig = new byte[41]; // all rfc2536 signatures are 41 bytes.
// Calculate T:
sig[0] = (byte) ((params.getP().bitLength() - 512) / 64);
@ -437,13 +435,15 @@ public class SignUtils {
// S is shorter than 20 bytes, so right justify the number
// (s_pad is negative here).
Arrays.fill(sig, 21, 21 - s_pad, (byte) 0);
System.arraycopy(signature, 26 + r_pad, sig, 21 - s_pad, 20 +
s_pad);
System
.arraycopy(signature, 26 + r_pad, sig, 21 - s_pad,
20 + s_pad);
}
if ((r_pad < 0) || (s_pad < 0)) {
log.trace("(finish ***) RFC 2536 DSA Sig:\n" +
base64.toString(sig));
log
.trace("(finish ***) RFC 2536 DSA Sig:\n"
+ base64.toString(sig));
} else {
log.trace("(finish) RFC 2536 DSA Sig:\n" + base64.toString(sig));
}
@ -456,24 +456,26 @@ public class SignUtils {
* useful for comparing RDATA portions of DNS records in doing DNSSEC
* canonical ordering.
*/
public static class ByteArrayComparator implements Comparator<byte []> {
private int mOffset = 0;
private boolean mDebug = false;
public static class ByteArrayComparator implements Comparator<byte[]> {
private int mOffset = 0;
private boolean mDebug = false;
public ByteArrayComparator() {}
public ByteArrayComparator(int offset, boolean debug) {
mOffset = offset;
mDebug = debug;
public ByteArrayComparator() {
}
public int compare(byte [] b1, byte [] b2) throws ClassCastException {
public ByteArrayComparator(int offset, boolean debug) {
mOffset = offset;
mDebug = debug;
}
public int compare(byte[] b1, byte[] b2) throws ClassCastException {
for (int i = mOffset; (i < b1.length) && (i < b2.length); i++) {
if (b1[i] != b2[i]) {
if (mDebug) {
System.out.println("offset " + i +
" differs (this is " + (i - mOffset) +
" bytes in from our offset.)");
System.out
.println("offset " + i + " differs (this is "
+ (i - mOffset)
+ " bytes in from our offset.)");
}
return (b1[i] & 0xFF) - (b2[i] & 0xFF);

View File

@ -27,7 +27,6 @@ import org.xbill.DNS.*;
import java.util.*;
/**
*
*/
@ -89,10 +88,10 @@ public class TrustAnchorStore {
for (Map.Entry<String, SRRset> entry : mMap.entrySet()) {
for (Iterator<Record> i = entry.getValue().rrs(); i.hasNext();) {
DNSKEYRecord r = (DNSKEYRecord) i.next();
String key_desc = r.getName().toString() + "/" +
DNSSEC.Algorithm.string(r.getAlgorithm()) + "/" +
r.getFootprint();
DNSKEYRecord r = (DNSKEYRecord) i.next();
String key_desc = r.getName().toString() + "/"
+ DNSSEC.Algorithm.string(r.getAlgorithm()) + "/"
+ r.getFootprint();
res.add(key_desc);
}
}

View File

@ -27,15 +27,15 @@ import org.xbill.DNS.Name;
import java.util.*;
/**
* Some basic utility functions.
*/
public class Util {
/**
* Convert a DNS name into a string suitable for use as a cache key.
*
* @param name The name to convert.
*
* @param name
* The name to convert.
* @return A string representing the name. This isn't ever meant to be
* converted back into a DNS name.
*/
@ -78,7 +78,7 @@ public class Util {
}
public static List<ConfigEntry> parseConfigPrefix(Properties config,
String prefix) {
String prefix) {
if (!prefix.endsWith(".")) {
prefix = prefix + ".";
}
@ -102,8 +102,8 @@ public class Util {
public String value;
public ConfigEntry(String key, String value) {
this.key = key;
this.value = value;
this.key = key;
this.value = value;
}
}
}

View File

@ -32,14 +32,13 @@ import java.security.NoSuchAlgorithmException;
import java.util.Iterator;
/**
* This is a collection of routines encompassing the logic of validating
* different message types.
*/
public class ValUtils {
private static Logger st_log = Logger.getLogger(ValUtils.class);
private Logger log = Logger.getLogger(this.getClass());
private Logger log = Logger.getLogger(this.getClass());
/** A local copy of the verifier object. */
private DnsSecVerifier mVerifier;
@ -50,19 +49,19 @@ public class ValUtils {
/**
* Given a response, classify ANSWER responses into a subtype.
*
*
* @param m
* The response to classify.
*
*
* @return A subtype ranging from UNKNOWN to NAMEERROR.
*/
public static ResponseType classifyResponse(SMessage m, Name zone) {
SRRset [] rrsets;
SRRset[] rrsets;
// Normal Name Error's are easy to detect -- but don't mistake a CNAME
// chain ending in NXDOMAIN.
if ((m.getRcode() == Rcode.NXDOMAIN) &&
(m.getCount(Section.ANSWER) == 0)) {
if ((m.getRcode() == Rcode.NXDOMAIN)
&& (m.getCount(Section.ANSWER) == 0)) {
return ResponseType.NAMEERROR;
}
@ -75,13 +74,13 @@ public class ValUtils {
// 1) nothing in the ANSWER section
// 2) an NS RRset in the AUTHORITY section that is a strict subdomain of
// 'zone' (the presumed queried zone).
if ((zone != null) && (m.getCount(Section.ANSWER) == 0) &&
(m.getCount(Section.AUTHORITY) > 0)) {
if ((zone != null) && (m.getCount(Section.ANSWER) == 0)
&& (m.getCount(Section.AUTHORITY) > 0)) {
rrsets = m.getSectionRRsets(Section.AUTHORITY);
for (int i = 0; i < rrsets.length; ++i) {
if ((rrsets[i].getType() == Type.NS) &&
strictSubdomain(rrsets[i].getName(), zone)) {
if ((rrsets[i].getType() == Type.NS)
&& strictSubdomain(rrsets[i].getName(), zone)) {
return ResponseType.REFERRAL;
}
}
@ -125,7 +124,7 @@ public class ValUtils {
* Given a response, determine the name of the "signer". This is primarily
* to determine if the response is, in fact, signed at all, and, if so, what
* is the name of the most pertinent keyset.
*
*
* @param m
* The response to analyze.
* @return a signer name, if the response is signed (even partially), or
@ -135,9 +134,8 @@ public class ValUtils {
// FIXME: this used to classify the message, then look in the pertinent
// section. Now we just find the first RRSIG in the ANSWER and AUTHORIY
// sections.
for (int section = Section.ANSWER; section < Section.ADDITIONAL;
++section) {
SRRset [] rrsets = m.getSectionRRsets(section);
for (int section = Section.ANSWER; section < Section.ADDITIONAL; ++section) {
SRRset[] rrsets = m.getSectionRRsets(section);
for (int i = 0; i < rrsets.length; ++i) {
Name signerName = rrsets[i].getSignerName();
@ -153,14 +151,14 @@ public class ValUtils {
/**
* Given a DNSKEY record, generate the DS record from it.
*
*
* @param keyrec
* the DNSKEY record in question.
* @param ds_alg
* The DS digest algorithm in use.
* @return the corresponding {@link org.xbill.DNS.DSRecord}
*/
public static byte [] calculateDSHash(DNSKEYRecord keyrec, int ds_alg) {
public static byte[] calculateDSHash(DNSKEYRecord keyrec, int ds_alg) {
DNSOutput os = new DNSOutput();
os.writeByteArray(keyrec.getName().toWireCanonical());
@ -170,20 +168,20 @@ public class ValUtils {
MessageDigest md = null;
switch (ds_alg) {
case DSRecord.SHA1_DIGEST_ID:
md = MessageDigest.getInstance("SHA");
case DSRecord.SHA1_DIGEST_ID:
md = MessageDigest.getInstance("SHA");
return md.digest(os.toByteArray());
return md.digest(os.toByteArray());
case DSRecord.SHA256_DIGEST_ID:
md = MessageDigest.getInstance("SHA256");
case DSRecord.SHA256_DIGEST_ID:
md = MessageDigest.getInstance("SHA256");
return md.digest(os.toByteArray());
return md.digest(os.toByteArray());
default:
st_log.warn("Unknown DS algorithm: " + ds_alg);
default:
st_log.warn("Unknown DS algorithm: " + ds_alg);
return null;
return null;
}
} catch (NoSuchAlgorithmException e) {
st_log.error("Error using DS algorithm: " + ds_alg, e);
@ -206,30 +204,30 @@ public class ValUtils {
/**
* Check to see if a type is a special DNSSEC type.
*
*
* @param type
* The type.
*
*
* @return true if the type is one of the special DNSSEC types.
*/
public static boolean isDNSSECType(int type) {
switch (type) {
case Type.DNSKEY:
case Type.NSEC:
case Type.DS:
case Type.RRSIG:
case Type.NSEC3:
return true;
case Type.DNSKEY:
case Type.NSEC:
case Type.DS:
case Type.RRSIG:
case Type.NSEC3:
return true;
default:
return false;
default:
return false;
}
}
/**
* Set the security status of a particular RRset. This will only upgrade the
* security status.
*
*
* @param rrset
* The SRRset to update.
* @param security
@ -251,14 +249,14 @@ public class ValUtils {
* Set the security status of a message and all of its RRsets. This will
* only upgrade the status of the message (i.e., set to more secure, not
* less) and all of the RRsets.
*
*
* @param m
* @param security
* KeyEntry ke;
*
*
* SMessage m = response.getSMessage(); SRRset ans_rrset =
* m.findAnswerRRset(qname, qtype, qclass);
*
*
* ke = verifySRRset(ans_rrset, key_rrset); if
* (ans_rrset.getSecurityStatus() != SecurityStatus.SECURE) {
* return; } key_rrset = ke.getRRset();
@ -274,9 +272,8 @@ public class ValUtils {
m.setStatus(security);
}
for (int section = Section.ANSWER; section <= Section.ADDITIONAL;
section++) {
SRRset [] rrsets = m.getSectionRRsets(section);
for (int section = Section.ANSWER; section <= Section.ADDITIONAL; section++) {
SRRset[] rrsets = m.getSectionRRsets(section);
for (int i = 0; i < rrsets.length; i++) {
setRRsetSecurity(rrsets[i], security);
@ -288,7 +285,7 @@ public class ValUtils {
* Given an SRRset that is signed by a DNSKEY found in the key_rrset, verify
* it. This will return the status (either BOGUS or SECURE) and set that
* status in rrset.
*
*
* @param rrset
* The SRRset to verify.
* @param key_rrset
@ -296,13 +293,13 @@ public class ValUtils {
* @return The status (BOGUS or SECURE).
*/
public byte verifySRRset(SRRset rrset, SRRset key_rrset) {
String rrset_name = rrset.getName() + "/" +
Type.string(rrset.getType()) + "/" +
DClass.string(rrset.getDClass());
String rrset_name = rrset.getName() + "/"
+ Type.string(rrset.getType()) + "/"
+ DClass.string(rrset.getDClass());
if (rrset.getSecurityStatus() == SecurityStatus.SECURE) {
log.trace("verifySRRset: rrset <" + rrset_name +
"> previously found to be SECURE");
log.trace("verifySRRset: rrset <" + rrset_name
+ "> previously found to be SECURE");
return SecurityStatus.SECURE;
}
@ -310,12 +307,12 @@ public class ValUtils {
byte status = mVerifier.verify(rrset, key_rrset);
if (status != SecurityStatus.SECURE) {
log.debug("verifySRRset: rrset <" + rrset_name +
"> found to be BAD");
log.debug("verifySRRset: rrset <" + rrset_name
+ "> found to be BAD");
status = SecurityStatus.BOGUS;
} else {
log.trace("verifySRRset: rrset <" + rrset_name +
"> found to be SECURE");
log.trace("verifySRRset: rrset <" + rrset_name
+ "> found to be SECURE");
}
rrset.setSecurityStatus(status);
@ -325,14 +322,14 @@ public class ValUtils {
/**
* Determine if a given type map has a given type.
*
*
* @param types
* The type map from the NSEC record.
* @param type
* The type to look for.
* @return true if the type is present in the type map, false otherwise.
*/
public static boolean typeMapHasType(int [] types, int type) {
public static boolean typeMapHasType(int[] types, int type) {
for (int i = 0; i < types.length; i++) {
if (types[i] == type) {
return true;
@ -353,7 +350,7 @@ public class ValUtils {
/**
* Finds the longest common name between two domain names.
*
*
* @param domain1
* @param domain2
* @return
@ -368,7 +365,7 @@ public class ValUtils {
int d1_labels = domain1.labels();
int d2_labels = domain2.labels();
int l = (d1_labels < d2_labels) ? d1_labels : d2_labels;
int l = (d1_labels < d2_labels) ? d1_labels : d2_labels;
for (int i = l; i > 0; i--) {
Name n1 = new Name(domain1, d1_labels - i);
@ -398,7 +395,7 @@ public class ValUtils {
/**
* Determine by looking at a signed RRset whether or not the rrset name was
* the result of a wildcard expansion.
*
*
* @param rrset
* The rrset to examine.
* @return true if the rrset is a wildcard expansion. This will return false
@ -422,7 +419,7 @@ public class ValUtils {
* Determine by looking at a signed RRset whether or not the RRset name was
* the result of a wildcard expansion. If so, return the name of the
* generating wildcard.
*
*
* @param rrset
* The rrset to check.
* @return the wildcard name, if the rrset was synthesized from a wildcard.
@ -466,7 +463,7 @@ public class ValUtils {
/**
* Determine if the given NSEC proves a NameError (NXDOMAIN) for a given
* qname.
*
*
* @param nsec
* The NSEC to check.
* @param qname
@ -478,9 +475,9 @@ public class ValUtils {
* @return true if the NSEC proves the condition.
*/
public static boolean nsecProvesNameError(NSECRecord nsec, Name qname,
Name signerName) {
Name signerName) {
Name owner = nsec.getName();
Name next = nsec.getNext();
Name next = nsec.getNext();
// If NSEC owner == qname, then this NSEC proves that qname exists.
if (qname.equals(owner)) {
@ -490,16 +487,16 @@ public class ValUtils {
// If NSEC is a parent of qname, we need to check the type map
// If the parent name has a DNAME or is a delegation point, then this
// NSEC is being misused.
boolean hasBadType = typeMapHasType(nsec.getTypes(), Type.DNAME) ||
(typeMapHasType(nsec.getTypes(), Type.NS) &&
!typeMapHasType(nsec.getTypes(), Type.SOA));
boolean hasBadType = typeMapHasType(nsec.getTypes(), Type.DNAME)
|| (typeMapHasType(nsec.getTypes(), Type.NS) && !typeMapHasType(
nsec.getTypes(), Type.SOA));
if (qname.subdomain(owner) && hasBadType) {
return false;
}
if (((qname.compareTo(owner) > 0) && (qname.compareTo(next) < 0)) ||
signerName.equals(next)) {
if (((qname.compareTo(owner) > 0) && (qname.compareTo(next) < 0))
|| signerName.equals(next)) {
return true;
}
@ -509,7 +506,7 @@ public class ValUtils {
/**
* Determine if a NSEC record proves the non-existence of a wildcard that
* could have produced qname.
*
*
* @param nsec
* The nsec to check.
* @param qname
@ -519,18 +516,19 @@ public class ValUtils {
* @return true if the NSEC proves the condition.
*/
public static boolean nsecProvesNoWC(NSECRecord nsec, Name qname,
Name signerName) {
Name owner = nsec.getName();
Name next = nsec.getNext();
Name signerName) {
Name owner = nsec.getName();
Name next = nsec.getNext();
int qname_labels = qname.labels();
int signer_labels = signerName.labels();
int qname_labels = qname.labels();
int signer_labels = signerName.labels();
for (int i = qname_labels - signer_labels; i > 0; i--) {
Name wc_name = qname.wild(i);
if ((wc_name.compareTo(owner) > 0) &&
((wc_name.compareTo(next) < 0) || signerName.equals(next))) {
if ((wc_name.compareTo(owner) > 0)
&& ((wc_name.compareTo(next) < 0) || signerName
.equals(next))) {
return true;
}
}
@ -544,7 +542,7 @@ public class ValUtils {
* wildcard case. If the ownername of 'nsec' is a wildcard, the validator
* must still be provided proof that qname did not directly exist and that
* the wildcard is, in fact, *.closest_encloser.
*
*
* @param nsec
* The NSEC to check
* @param qname
@ -554,7 +552,7 @@ public class ValUtils {
* @return true if the NSEC proves the condition.
*/
public static boolean nsecProvesNodata(NSECRecord nsec, Name qname,
int qtype) {
int qtype) {
if (!nsec.getName().equals(qname)) {
// wildcard checking.
@ -571,8 +569,8 @@ public class ValUtils {
// The qname must be a strict subdomain of the closest encloser,
// and
// the qtype must be absent from the type map.
if (!strictSubdomain(qname, ce) ||
typeMapHasType(nsec.getTypes(), qtype)) {
if (!strictSubdomain(qname, ce)
|| typeMapHasType(nsec.getTypes(), qtype)) {
return false;
}
@ -585,8 +583,8 @@ public class ValUtils {
// be
// less than qname, and the next name will be a child domain of the
// qname.
if (strictSubdomain(nsec.getNext(), qname) &&
(qname.compareTo(nsec.getName()) > 0)) {
if (strictSubdomain(nsec.getNext(), qname)
&& (qname.compareTo(nsec.getName()) > 0)) {
return true;
}
@ -610,8 +608,8 @@ public class ValUtils {
// not a zone apex), then we should have gotten a referral (or we just
// got
// the wrong NSEC).
if (typeMapHasType(nsec.getTypes(), Type.NS) &&
!typeMapHasType(nsec.getTypes(), Type.SOA)) {
if (typeMapHasType(nsec.getTypes(), Type.NS)
&& !typeMapHasType(nsec.getTypes(), Type.SOA)) {
return false;
}
@ -620,7 +618,7 @@ public class ValUtils {
public static byte nsecProvesNoDS(NSECRecord nsec, Name qname) {
// Could check to make sure the qname is a subdomain of nsec
int [] types = nsec.getTypes();
int[] types = nsec.getTypes();
if (typeMapHasType(types, Type.SOA) || typeMapHasType(types, Type.DS)) {
// SOA present means that this is the NSEC from the child, not the
@ -644,8 +642,8 @@ public class ValUtils {
// These are response subtypes. They are necessary for determining the
// validation strategy. They have no bearing on the iterative resolution
// algorithm, so they are confined here.
public enum ResponseType {UNTYPED, UNKNOWN, POSITIVE, CNAME, NODATA,
NAMEERROR, ANY, REFERRAL,
public enum ResponseType {
UNTYPED, UNKNOWN, POSITIVE, CNAME, NODATA, NAMEERROR, ANY, REFERRAL,
// a referral response
THROWAWAY;
// a throwaway response (i.e., an error)