fix typo in package dir

This commit is contained in:
2010-05-31 12:09:04 -04:00
parent 657c073cc5
commit 7e517ec3df
10 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,998 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
import org.apache.log4j.Logger;
import org.xbill.DNS.*;
import java.io.IOException;
import java.util.*;
/**
* This resolver module implements a "captive" DNSSEC validator. The captive
* validator does not have direct access to the Internet and DNS system --
* instead it attempts to validate DNS messages using only configured context.
* This is useful for determining if responses coming from a given authoritative
* server will validate independent of the normal chain of trust.
*/
public class CaptiveValidator {
// A data structure holding all all of our trusted keys.
private TrustAnchorStore mTrustedKeys;
// The local validation utilities.
private ValUtils mValUtils;
// The local verification utility.
private DnsSecVerifier mVerifier;
private Logger log = Logger.getLogger(this.getClass());
public CaptiveValidator() {
mVerifier = new DnsSecVerifier();
mValUtils = new ValUtils(mVerifier);
mTrustedKeys = new TrustAnchorStore();
}
// ---------------- Module Initialization -------------------
/**
* Add a set of trusted keys from a file. The file should be in DNS master
* zone file format. Only DNSKEY records will be added.
*
* @param filename
* The file contains the trusted keys.
* @throws IOException
*/
@SuppressWarnings("unchecked")
public void addTrustedKeysFromFile(String filename)
throws IOException {
// First read in the whole trust anchor file.
Master master = new Master(filename, Name.root, 0);
ArrayList<Record> records = new ArrayList<Record>();
Record r = null;
while ((r = master.nextRecord()) != null) {
records.add(r);
}
// Record.compareTo() should sort them into DNSSEC canonical order.
// Don't care about canonical order per se, but do want them to be
// formable into RRsets.
Collections.sort(records);
SRRset cur_rrset = new SRRset();
for (Record rec : records) {
// Skip RR types that cannot be used as trusted keys. I.e.,
// everything not a key :)
if (rec.getType() != Type.DNSKEY) {
continue;
}
// If our cur_rrset is empty, we can just add it.
if (cur_rrset.size() == 0) {
cur_rrset.addRR(rec);
continue;
}
// If this record matches our current RRset, we can just add it.
if (cur_rrset.getName().equals(rec.getName()) &&
(cur_rrset.getType() == rec.getType()) &&
(cur_rrset.getDClass() == rec.getDClass())) {
cur_rrset.addRR(rec);
continue;
}
// Otherwise, we add the rrset to our set of trust anchors.
mTrustedKeys.store(cur_rrset);
cur_rrset = new SRRset();
cur_rrset.addRR(rec);
}
// add the last rrset (if it was not empty)
if (cur_rrset.size() > 0) {
mTrustedKeys.store(cur_rrset);
}
}
public void addTrustedKeysFromResponse(Message m) {
RRset [] rrsets = m.getSectionRRsets(Section.ANSWER);
for (int i = 0; i < rrsets.length; ++i) {
if (rrsets[i].getType() == Type.DNSKEY) {
SRRset srrset = new SRRset(rrsets[i]);
mTrustedKeys.store(srrset);
}
}
}
// ----------------- Validation Support ----------------------
/**
* This routine normalizes a response. This includes removing "irrelevant"
* records from the answer and additional sections and (re)synthesizing
* CNAMEs from DNAMEs, if present.
*
* @param response
*/
private SMessage normalize(SMessage m) {
if (m == null) {
return m;
}
if ((m.getRcode() != Rcode.NOERROR) &&
(m.getRcode() != Rcode.NXDOMAIN)) {
return m;
}
Name qname = m.getQuestion().getName();
int qtype = m.getQuestion().getType();
Name sname = qname;
// For the ANSWER section, remove all "irrelevant" records and add
// synthesized CNAMEs from DNAMEs
// This will strip out-of-order CNAMEs as well.
List<SRRset> rrset_list = m.getSectionList(Section.ANSWER);
Set<Name> additional_names = new HashSet<Name>();
for (ListIterator<SRRset> i = rrset_list.listIterator(); i.hasNext();) {
SRRset rrset = i.next();
int type = rrset.getType();
Name n = rrset.getName();
// Handle DNAME synthesis; DNAME synthesis does not occur at the
// DNAME name itself.
if ((type == Type.DNAME) && ValUtils.strictSubdomain(sname, n)) {
if (rrset.size() > 1) {
log.debug("Found DNAME rrset with size > 1: " + rrset);
m.setStatus(SecurityStatus.INVALID);
return m;
}
DNAMERecord dname = (DNAMERecord) rrset.first();
try {
Name cname_alias = sname.fromDNAME(dname);
// Note that synthesized CNAMEs should have a TTL of zero.
CNAMERecord cname = new CNAMERecord(sname,
dname.getDClass(), 0, cname_alias);
SRRset cname_rrset = new SRRset();
cname_rrset.addRR(cname);
i.add(cname_rrset);
sname = cname_alias;
} catch (NameTooLongException e) {
log.debug("not adding synthesized CNAME -- " +
"generated name is too long", e);
}
continue;
}
// The only records in the ANSWER section not allowed to
if (!n.equals(sname)) {
log.debug("normalize: removing irrelevant rrset: " + rrset);
i.remove();
continue;
}
// Follow the CNAME chain.
if (type == Type.CNAME) {
if (rrset.size() > 1) {
log.debug("Found CNAME rrset with size > 1: " + rrset);
m.setStatus(SecurityStatus.INVALID);
return m;
}
CNAMERecord cname = (CNAMERecord) rrset.first();
sname = cname.getAlias();
continue;
}
// Otherwise, make sure that the RRset matches the qtype.
if ((qtype != Type.ANY) && (qtype != type)) {
log.debug("normalize: removing irrelevant rrset: " + rrset);
i.remove();
}
// Otherwise, fetch the additional names from the relevant rrset.
rrsetAdditionalNames(additional_names, rrset);
}
// Get additional names from AUTHORITY
rrset_list = m.getSectionList(Section.AUTHORITY);
for (SRRset rrset : rrset_list) {
rrsetAdditionalNames(additional_names, rrset);
}
// For each record in the additional section, remove it if it is an
// address record and not in the collection of additional names found in
// ANSWER and AUTHORITY.
rrset_list = m.getSectionList(Section.ADDITIONAL);
for (Iterator<SRRset> i = rrset_list.iterator(); i.hasNext();) {
SRRset rrset = i.next();
int type = rrset.getType();
if (((type == Type.A) || (type == Type.AAAA)) &&
!additional_names.contains(rrset.getName())) {
i.remove();
}
}
return m;
}
/**
* Extract additional names from the records in an rrset.
*
* @param additional_names
* The set to add the additional names to, if any.
* @param rrset
* The rrset to extract from.
*/
private void rrsetAdditionalNames(Set<Name> additional_names, SRRset rrset) {
if (rrset == null) {
return;
}
for (Iterator<Record> i = rrset.rrs(); i.hasNext();) {
Record r = i.next();
Name add_name = r.getAdditionalName();
if (add_name != null) {
additional_names.add(add_name);
}
}
}
private SRRset findKeys(SMessage message) {
Name qname = message.getQName();
int qclass = message.getQClass();
return mTrustedKeys.find(qname, qclass);
}
/**
* Check to see if a given response needs to go through the validation
* process. Typical reasons for this routine to return false are: CD bit was
* on in the original request, the response was already validated, or the
* response is a kind of message that is unvalidatable (i.e., SERVFAIL,
* REFUSED, etc.)
*
* @param message
* The message to check.
* @param origRequest
* The original request received from the client.
*
* @return true if the response could use validation (although this does not
* mean we can actually validate this response).
*/
private boolean needsValidation(SMessage message) {
int rcode = message.getRcode();
if ((rcode != Rcode.NOERROR) && (rcode != Rcode.NXDOMAIN)) {
log.debug("cannot validate non-answer.");
log.trace("non-answer: " + message);
return false;
}
if (!mTrustedKeys.isBelowTrustAnchor(message.getQName(),
message.getQClass())) {
return false;
}
return true;
}
/**
* Given a "positive" response -- a response that contains an answer to the
* question, and no CNAME chain, validate this response. This generally
* consists of verifying the answer RRset and the authority RRsets.
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
* @param response
* The response to validate.
* @param request
* The request that generated this response.
* @param key_rrset
* The trusted DNSKEY rrset that matches the signer of the
* answer.
*/
private void validatePositiveResponse(SMessage message, SRRset key_rrset) {
Name qname = message.getQName();
int qtype = message.getQType();
SMessage m = message;
// validate the ANSWER section - this will be the answer itself
SRRset [] rrsets = m.getSectionRRsets(Section.ANSWER);
Name wc = null;
boolean wcNSEC_ok = false;
boolean dname = false;
List<NSEC3Record> nsec3s = null;
for (int i = 0; i < rrsets.length; i++) {
// Skip the CNAME following a (validated) DNAME.
// Because of the normalization routines in NameserverClient, there
// will always be an unsigned CNAME following a DNAME (unless
// qtype=DNAME).
if (dname && (rrsets[i].getType() == Type.CNAME)) {
dname = false;
continue;
}
// Verify the answer rrset.
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
// If the (answer) rrset failed to validate, then this message is
// BAD.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed ANSWER rrset: " +
rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
// Check to see if the rrset is the result of a wildcard expansion.
// If so, an additional check will need to be made in the authority
// section.
wc = ValUtils.rrsetWildcard(rrsets[i]);
// Notice a DNAME that should be followed by an unsigned CNAME.
if ((qtype != Type.DNAME) && (rrsets[i].getType() == Type.DNAME)) {
dname = true;
}
}
// validate the AUTHORITY section as well - this will generally be the
// NS rrset (which could be missing, no problem)
rrsets = m.getSectionRRsets(Section.AUTHORITY);
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
// If anything in the authority section fails to be secure, we have
// a
// bad message.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed AUTHORITY rrset: " +
rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
// If this is a positive wildcard response, and we have a (just
// verified) NSEC record, try to use it to 1) prove that qname
// doesn't exist and 2) that the correct wildcard was used.
if ((wc != null) && (rrsets[i].getType() == Type.NSEC)) {
NSECRecord nsec = (NSECRecord) rrsets[i].first();
if (ValUtils.nsecProvesNameError(nsec, qname,
key_rrset.getName())) {
Name nsec_wc = ValUtils.nsecWildcard(qname, nsec);
if (!wc.equals(nsec_wc)) {
// log.debug("Positive wildcard response wasn't generated "
// + "by the correct wildcard");
m.setStatus(SecurityStatus.BOGUS);
return;
}
wcNSEC_ok = true;
}
}
// Otherwise, if this is a positive wildcard response and we have
// NSEC3 records, collect them.
if ((wc != null) && (rrsets[i].getType() == Type.NSEC3)) {
if (nsec3s == null) {
nsec3s = new ArrayList<NSEC3Record>();
}
nsec3s.add((NSEC3Record) rrsets[i].first());
}
}
// If this was a positive wildcard response that we haven't already
// proven, and we have NSEC3 records, try to prove it using the NSEC3
// records.
if ((wc != null) && !wcNSEC_ok && (nsec3s != null)) {
if (NSEC3ValUtils.proveWildcard(nsec3s, qname, key_rrset.getName(),
wc)) {
wcNSEC_ok = true;
}
}
// If after all this, we still haven't proven the positive wildcard
// response, fail.
if ((wc != null) && !wcNSEC_ok) {
// log.debug("positive response was wildcard expansion and "
// + "did not prove original data did not exist");
m.setStatus(SecurityStatus.BOGUS);
return;
}
log.trace("Successfully validated positive response");
m.setStatus(SecurityStatus.SECURE);
}
private void validateReferral(SMessage message, SRRset key_rrset) {
SMessage m = message;
if (m.getCount(Section.ANSWER) > 0) {
m.setStatus(SecurityStatus.INVALID);
return;
}
// validate the AUTHORITY section.
SRRset [] rrsets = m.getSectionRRsets(Section.AUTHORITY);
boolean secure_delegation = false;
Name delegation = null;
Name nsec3zone = null;
NSECRecord nsec = null;
List<NSEC3Record> nsec3s = null;
// validate the AUTHORITY section as well - this will generally be the
// NS rrset, plus proof of a secure delegation or not
rrsets = m.getSectionRRsets(Section.AUTHORITY);
for (int i = 0; i < rrsets.length; i++) {
int type = rrsets[i].getType();
// The NS RRset won't be signed, but everything else should be.
if (type != Type.NS) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
// If anything in the authority section fails to be secure, we
// have
// a bad message.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed AUTHORITY rrset: " +
rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
}
switch (type) {
case Type.DS:
secure_delegation = true;
break;
case Type.NS:
delegation = rrsets[i].getName();
break;
case Type.NSEC:
nsec = (NSECRecord) rrsets[i].first();
break;
case Type.NSEC3:
if (nsec3s == null) {
nsec3s = new ArrayList<NSEC3Record>();
}
NSEC3Record nsec3 = (NSEC3Record) rrsets[i].first();
nsec3s.add(nsec3);
nsec3zone = rrsets[i].getSignerName(); // this is a hack of
// sorts.
break;
default:
log.warn(
"Encountered unexpected type in a REFERRAL response: " +
Type.string(type));
break;
}
}
// At this point, all validatable RRsets have been validated.
// Now to check to see if we have a valid combination of things.
if (delegation == null) {
// somehow we have a referral without an NS rrset.
m.setStatus(SecurityStatus.BOGUS);
return;
}
if (secure_delegation) {
if ((nsec != null) || ((nsec3s != null) && (nsec3s.size() > 0))) {
// we found both a DS rrset *and* NSEC/NSEC3 rrsets!
m.setStatus(SecurityStatus.BOGUS);
return;
}
// otherwise, we are done.
m.setStatus(SecurityStatus.SECURE);
return;
}
// Note: not going to care if both NSEC and NSEC3 rrsets were present.
if (nsec != null) {
byte status = ValUtils.nsecProvesNoDS(nsec, delegation);
if (status != SecurityStatus.SECURE) {
// The NSEC *must* prove that there was no DS record. The
// INSECURE state here is still bogus.
m.setStatus(SecurityStatus.BOGUS);
return;
}
m.setStatus(SecurityStatus.SECURE);
return;
}
if (nsec3s.size() > 0) {
byte status = NSEC3ValUtils.proveNoDS(nsec3s, delegation, nsec3zone);
if (status != SecurityStatus.SECURE) {
// the NSEC3 RRs MUST prove no DS, so the INDETERMINATE state is
// actually bogus
m.setStatus(SecurityStatus.BOGUS);
return;
}
m.setStatus(SecurityStatus.SECURE);
return;
}
// failed to find proof either way.
m.setStatus(SecurityStatus.BOGUS);
}
private void validateCNAMEResponse(SMessage message, SRRset key_rrset) {}
/**
* Given an "ANY" response -- a response that contains an answer to a
* qtype==ANY question, with answers. This consists of simply verifying all
* present answer/auth RRsets, with no checking that all types are present.
*
* NOTE: it may be possible to get parent-side delegation point records
* here, which won't all be signed. Right now, this routine relies on the
* upstream iterative resolver to not return these responses -- instead
* treating them as referrals.
*
* NOTE: RFC 4035 is silent on this issue, so this may change upon
* clarification.
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
* @param message
* The response to validate.
* @param key_rrset
* The trusted DNSKEY rrset that matches the signer of the
* answer.
*/
private void validateAnyResponse(SMessage message, SRRset key_rrset) {
int qtype = message.getQType();
if (qtype != Type.ANY) {
throw new IllegalArgumentException(
"ANY validation called on non-ANY response.");
}
SMessage m = message;
// validate the ANSWER section.
SRRset [] rrsets = m.getSectionRRsets(Section.ANSWER);
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
// If the (answer) rrset failed to validate, then this message is
// BAD.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed ANSWER rrset: " +
rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
}
// validate the AUTHORITY section as well - this will be the NS rrset
// (which could be missing, no problem)
rrsets = m.getSectionRRsets(Section.AUTHORITY);
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
// If anything in the authority section fails to be secure, we have
// a
// bad message.
if (status != SecurityStatus.SECURE) {
log.debug("Positive response has failed AUTHORITY rrset: " +
rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
}
log.trace("Successfully validated positive ANY response");
m.setStatus(SecurityStatus.SECURE);
}
/**
* Validate a NOERROR/NODATA signed response -- a response that has a
* NOERROR Rcode but no ANSWER section RRsets. This consists of verifying
* the authority section rrsets and making certain that the authority
* section NSEC/NSEC3s proves that the qname does exist and the qtype
* doesn't.
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
* @param response
* The response to validate.
* @param request
* The request that generated this response.
* @param key_rrset
* The trusted DNSKEY rrset that signs this response.
*/
private void validateNodataResponse(SMessage message, SRRset key_rrset) {
Name qname = message.getQName();
int qtype = message.getQType();
SMessage m = message;
// Since we are here, there must be nothing in the ANSWER section to
// validate. (Note: CNAME/DNAME responses will not directly get here --
// instead they are broken down into individual CNAME/DNAME/final answer
// responses.)
// validate the AUTHORITY section
SRRset [] rrsets = m.getSectionRRsets(Section.AUTHORITY);
boolean hasValidNSEC = false; // If true, then the NODATA has been
// proven.
Name ce = null; // for wildcard NODATA responses. This is the proven
// closest encloser.
NSECRecord wc = null; // for wildcard NODATA responses. This is the
// wildcard NSEC.
List<NSEC3Record> nsec3s = null; // A collection of NSEC3 RRs found in
// the authority
// section.
Name nsec3Signer = null; // The RRSIG signer field for the NSEC3 RRs.
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
if (status != SecurityStatus.SECURE) {
log.debug("NODATA response has failed AUTHORITY rrset: " +
rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
// If we encounter an NSEC record, try to use it to prove NODATA.
// This needs to handle the ENT NODATA case.
if (rrsets[i].getType() == Type.NSEC) {
NSECRecord nsec = (NSECRecord) rrsets[i].first();
if (ValUtils.nsecProvesNodata(nsec, qname, qtype)) {
hasValidNSEC = true;
if (nsec.getName().isWild()) {
wc = nsec;
}
} else if (ValUtils.nsecProvesNameError(nsec, qname,
rrsets[i].getSignerName())) {
ce = ValUtils.closestEncloser(qname, nsec);
}
}
// Collect any NSEC3 records present.
if (rrsets[i].getType() == Type.NSEC3) {
if (nsec3s == null) {
nsec3s = new ArrayList<NSEC3Record>();
}
nsec3s.add((NSEC3Record) rrsets[i].first());
nsec3Signer = rrsets[i].getSignerName();
}
}
// check to see if we have a wildcard NODATA proof.
// The wildcard NODATA is 1 NSEC proving that qname does not exists (and
// also proving what the closest encloser is), and 1 NSEC showing the
// matching wildcard, which must be *.closest_encloser.
if ((ce != null) || (wc != null)) {
try {
Name wc_name = new Name("*", ce);
if (!wc_name.equals(wc.getName())) {
hasValidNSEC = false;
}
} catch (TextParseException e) {
log.error(e);
}
}
NSEC3ValUtils.stripUnknownAlgNSEC3s(nsec3s);
if (!hasValidNSEC && (nsec3s != null) && (nsec3s.size() > 0)) {
// try to prove NODATA with our NSEC3 record(s)
hasValidNSEC = NSEC3ValUtils.proveNodata(nsec3s, qname, qtype,
nsec3Signer);
}
if (!hasValidNSEC) {
log.debug("NODATA response failed to prove NODATA " +
"status with NSEC/NSEC3");
log.trace("Failed NODATA:\n" + m);
m.setStatus(SecurityStatus.BOGUS);
return;
}
log.trace("successfully validated NODATA response.");
m.setStatus(SecurityStatus.SECURE);
}
/**
* Validate a NAMEERROR signed response -- a response that has a NXDOMAIN
* Rcode. This consists of verifying the authority section rrsets and making
* certain that the authority section NSEC proves that the qname doesn't
* exist and the covering wildcard also doesn't exist..
*
* Note that by the time this method is called, the process of finding the
* trusted DNSKEY rrset that signs this response must already have been
* completed.
*
* @param response
* The response to validate.
* @param request
* The request that generated this response.
* @param key_rrset
* The trusted DNSKEY rrset that signs this response.
*/
private void validateNameErrorResponse(SMessage message, SRRset key_rrset) {
Name qname = message.getQName();
SMessage m = message;
if (message.getCount(Section.ANSWER) > 0) {
log.warn(
"NAME ERROR response contained records in the ANSWER SECTION");
message.setStatus(SecurityStatus.INVALID);
return;
}
// Validate the authority section -- all RRsets in the authority section
// must be signed and valid.
// In addition, the NSEC record(s) must prove the NXDOMAIN condition.
boolean hasValidNSEC = false;
boolean hasValidWCNSEC = false;
SRRset [] rrsets = m.getSectionRRsets(Section.AUTHORITY);
List<NSEC3Record> nsec3s = null;
Name nsec3Signer = null;
for (int i = 0; i < rrsets.length; i++) {
int status = mValUtils.verifySRRset(rrsets[i], key_rrset);
if (status != SecurityStatus.SECURE) {
log.debug("NameError response has failed AUTHORITY rrset: " +
rrsets[i]);
m.setStatus(SecurityStatus.BOGUS);
return;
}
if (rrsets[i].getType() == Type.NSEC) {
NSECRecord nsec = (NSECRecord) rrsets[i].first();
if (ValUtils.nsecProvesNameError(nsec, qname,
rrsets[i].getSignerName())) {
hasValidNSEC = true;
}
if (ValUtils.nsecProvesNoWC(nsec, qname,
rrsets[i].getSignerName())) {
hasValidWCNSEC = true;
}
}
if (rrsets[i].getType() == Type.NSEC3) {
if (nsec3s == null) {
nsec3s = new ArrayList<NSEC3Record>();
}
nsec3s.add((NSEC3Record) rrsets[i].first());
nsec3Signer = rrsets[i].getSignerName();
}
}
NSEC3ValUtils.stripUnknownAlgNSEC3s(nsec3s);
if ((nsec3s != null) && (nsec3s.size() > 0)) {
log.debug("Validating nxdomain: using NSEC3 records");
// Attempt to prove name error with nsec3 records.
if (NSEC3ValUtils.allNSEC3sIgnoreable(nsec3s, key_rrset, mVerifier)) {
// log.debug("all NSEC3s were validated but ignored.");
m.setStatus(SecurityStatus.INSECURE);
return;
}
hasValidNSEC = NSEC3ValUtils.proveNameError(nsec3s, qname,
nsec3Signer);
// Note that we assume that the NSEC3ValUtils proofs encompass the
// wildcard part of the proof.
hasValidWCNSEC = hasValidNSEC;
}
// If the message fails to prove either condition, it is bogus.
if (!hasValidNSEC) {
log.debug("NameError response has failed to prove: " +
"qname does not exist");
m.setStatus(SecurityStatus.BOGUS);
return;
}
if (!hasValidWCNSEC) {
log.debug("NameError response has failed to prove: " +
"covering wildcard does not exist");
m.setStatus(SecurityStatus.BOGUS);
return;
}
// Otherwise, we consider the message secure.
log.trace("successfully validated NAME ERROR response.");
m.setStatus(SecurityStatus.SECURE);
}
public byte validateMessage(SMessage message, Name zone) {
if (!zone.isAbsolute()) {
try {
zone = Name.concatenate(zone, Name.root);
} catch (NameTooLongException e) {
log.error(e);
return SecurityStatus.UNCHECKED;
}
}
// FIXME: it is unclear if we should actually normalize our responses
// Instead, maybe we should just fail if they are not normal?
message = normalize(message);
if (!needsValidation(message)) {
return SecurityStatus.UNCHECKED;
}
SRRset key_rrset = findKeys(message);
if (key_rrset == null) {
return SecurityStatus.BOGUS;
}
ValUtils.ResponseType subtype = ValUtils.classifyResponse(message, zone);
switch (subtype) {
case POSITIVE:
log.trace("Validating a positive response");
validatePositiveResponse(message, key_rrset);
break;
case REFERRAL:
validateReferral(message, key_rrset);
break;
case NODATA:
log.trace("Validating a NODATA response");
validateNodataResponse(message, key_rrset);
break;
case NAMEERROR:
log.trace("Validating a NXDOMAIN response");
validateNameErrorResponse(message, key_rrset);
break;
case CNAME:
log.trace("Validating a CNAME response");
validateCNAMEResponse(message, key_rrset);
break;
case ANY:
log.trace("Validating a positive ANY response");
validateAnyResponse(message, key_rrset);
break;
default:
log.error("unhandled response subtype: " + subtype);
}
return message.getSecurityStatus().getStatus();
}
public byte validateMessage(Message message, String zone)
throws TextParseException {
SMessage sm = new SMessage(message);
Name z = Name.fromString(zone);
return validateMessage(sm, z);
}
public List<String> listTrustedKeys() {
return mTrustedKeys.listTrustAnchors();
}
}

View File

@@ -0,0 +1,522 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
import org.apache.log4j.Logger;
import org.xbill.DNS.*;
import org.xbill.DNS.security.*;
import java.io.*;
import java.security.*;
import java.util.*;
/**
* A class for performing basic DNSSEC verification. The DNSJAVA package
* contains a similar class. This is a re-implementation that allows us to have
* finer control over the validation process.
*/
public class DnsSecVerifier {
public static final int UNKNOWN = 0;
public static final int RSA = 1;
public static final int DSA = 2;
private Logger log = Logger.getLogger(this.getClass());
/**
* This is a mapping of DNSSEC algorithm numbers/private identifiers to JCA
* algorithm identifiers.
*/
private HashMap<Integer, AlgEntry> mAlgorithmMap;
public DnsSecVerifier() {
mAlgorithmMap = new HashMap<Integer, AlgEntry>();
// set the default algorithm map.
mAlgorithmMap.put(new Integer(DNSSEC.RSAMD5),
new AlgEntry("MD5withRSA", DNSSEC.RSAMD5, false));
mAlgorithmMap.put(new Integer(DNSSEC.DSA),
new AlgEntry("SHA1withDSA", DNSSEC.DSA, true));
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA1),
new AlgEntry("SHA1withRSA", DNSSEC.RSASHA1, false));
mAlgorithmMap.put(new Integer(DNSSEC.DSA_NSEC3_SHA1),
new AlgEntry("SHA1withDSA", DNSSEC.DSA, true));
mAlgorithmMap.put(new Integer(DNSSEC.RSA_NSEC3_SHA1),
new AlgEntry("SHA1withRSA", DNSSEC.RSASHA1, false));
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA256),
new AlgEntry("SHA256withRSA", DNSSEC.RSASHA256, false));
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA512),
new AlgEntry("SHA512withRSA", DNSSEC.RSASHA512, false));
}
private boolean isDSA(int algorithm) {
// shortcut the standard algorithms
if (algorithm == DNSSEC.DSA) {
return true;
}
if (algorithm == DNSSEC.RSASHA1) {
return false;
}
if (algorithm == DNSSEC.RSAMD5) {
return false;
}
AlgEntry entry = (AlgEntry) mAlgorithmMap.get(new Integer(algorithm));
if (entry != null) {
return entry.isDSA;
}
return false;
}
public void init(Properties config) {
if (config == null) {
return;
}
// Algorithm configuration
// For now, we just accept new identifiers for existing algorithms.
// FIXME: handle private identifiers.
List<Util.ConfigEntry> aliases = Util.parseConfigPrefix(config,
"dns.algorithm.");
for (Util.ConfigEntry entry : aliases) {
Integer alg_alias = new Integer(Util.parseInt(entry.key, -1));
Integer alg_orig = new Integer(Util.parseInt(entry.value, -1));
if (!mAlgorithmMap.containsKey(alg_orig)) {
log.warn("Unable to alias " + alg_alias +
" to unknown algorithm " + alg_orig);
continue;
}
if (mAlgorithmMap.containsKey(alg_alias)) {
log.warn("Algorithm alias " + alg_alias +
" is already defined and cannot be redefined");
continue;
}
mAlgorithmMap.put(alg_alias, mAlgorithmMap.get(alg_orig));
}
// for debugging purposes, log the entire algorithm map table.
for (Integer alg : mAlgorithmMap.keySet()) {
AlgEntry entry = mAlgorithmMap.get(alg);
if (entry == null) {
log.warn("DNSSEC alg " + alg + " has a null entry!");
} else {
log.debug("DNSSEC alg " + alg + " maps to " + entry.jcaName +
" (" + entry.dnssecAlg + ")");
}
}
}
/**
* Find the matching DNSKEY(s) to an RRSIG within a DNSKEY rrset. Normally
* this will only return one DNSKEY. It can return more than one, since
* KeyID/Footprints are not guaranteed to be unique.
*
* @param dnskey_rrset
* The DNSKEY rrset to search.
* @param signature
* The RRSIG to match against.
* @return A List contains a one or more DNSKEYRecord objects, or null if a
* matching DNSKEY could not be found.
*/
@SuppressWarnings("unchecked")
private List<DNSKEYRecord> findKey(RRset dnskey_rrset, RRSIGRecord signature) {
if (!signature.getSigner().equals(dnskey_rrset.getName())) {
log.trace("findKey: could not find appropriate key because " +
"incorrect keyset was supplied. Wanted: " +
signature.getSigner() + ", got: " + dnskey_rrset.getName());
return null;
}
int keyid = signature.getFootprint();
int alg = signature.getAlgorithm();
List<DNSKEYRecord> res = new ArrayList<DNSKEYRecord>(dnskey_rrset.size());
for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) {
DNSKEYRecord r = (DNSKEYRecord) i.next();
if ((r.getAlgorithm() == alg) && (r.getFootprint() == keyid)) {
res.add(r);
}
}
if (res.size() == 0) {
log.trace("findKey: could not find a key matching " +
"the algorithm and footprint in supplied keyset. ");
return null;
}
return res;
}
/**
* Check to see if a signature looks valid (i.e., matches the rrset in
* question, in the validity period, etc.)
*
* @param rrset
* The rrset that the signature belongs to.
* @param sigrec
* The signature record to check.
* @return A value of DNSSEC.Secure if it looks OK, DNSSEC.Faile if it looks
* bad.
*/
private byte checkSignature(RRset rrset, RRSIGRecord sigrec) {
if ((rrset == null) || (sigrec == null)) {
return DNSSEC.Failed;
}
if (!rrset.getName().equals(sigrec.getName())) {
log.debug("Signature name does not match RRset name");
return SecurityStatus.BOGUS;
}
if (rrset.getType() != sigrec.getTypeCovered()) {
log.debug("Signature type does not match RRset type");
return SecurityStatus.BOGUS;
}
Date now = new Date();
Date start = sigrec.getTimeSigned();
Date expire = sigrec.getExpire();
if (now.before(start)) {
log.debug("Signature is not yet valid");
return SecurityStatus.BOGUS;
}
if (now.after(expire)) {
log.debug("Signature has expired (now = " + now +
", sig expires = " + expire);
return SecurityStatus.BOGUS;
}
return SecurityStatus.SECURE;
}
public PublicKey parseDNSKEY(DNSKEYRecord key) {
AlgEntry ae = (AlgEntry) mAlgorithmMap.get(new Integer(
key.getAlgorithm()));
if (key.getAlgorithm() != ae.dnssecAlg) {
// Recast the DNSKEYRecord in question as one using the offical
// algorithm, to work around the lack of alias support in the
// underlying
// KEYConverter class from DNSjava
key = new DNSKEYRecord(key.getName(), key.getDClass(),
key.getTTL(), key.getFlags(), key.getProtocol(),
ae.dnssecAlg, key.getKey());
}
return KEYConverter.parseRecord(key);
}
/**
* Actually cryptographically verify a signature over the rrset. The RRSIG
* record must match the rrset being verified (see checkSignature).
*
* @param rrset
* The rrset to verify.
* @param sigrec
* The signature to verify with.
* @param key
* The (public) key associated with the RRSIG record.
* @return A security status code: SECURE if it worked, BOGUS if not,
* UNCHECKED if we just couldn't actually do the function.
*/
public byte verifySignature(RRset rrset, RRSIGRecord sigrec,
DNSKEYRecord key) {
try {
PublicKey pk = parseDNSKEY(key);
if (pk == null) {
log.warn(
"Could not convert DNSKEY record to a JCA public key: " +
key);
return SecurityStatus.UNCHECKED;
}
byte [] data = SignUtils.generateSigData(rrset, sigrec);
Signature signer = getSignature(sigrec.getAlgorithm());
if (signer == null) {
return SecurityStatus.BOGUS;
}
signer.initVerify(pk);
signer.update(data);
byte [] sig = sigrec.getSignature();
if (isDSA(sigrec.getAlgorithm())) {
sig = SignUtils.convertDSASignature(sig);
}
if (!signer.verify(sig)) {
log.info("Signature failed to verify cryptographically");
log.debug("Failed signature: " + sigrec);
return SecurityStatus.BOGUS;
}
log.trace("Signature verified: " + sigrec);
return SecurityStatus.SECURE;
} catch (IOException e) {
log.error("I/O error", e);
} catch (GeneralSecurityException e) {
log.error("Security error", e);
}
// FIXME: Since I'm not sure what would cause an exception here (failure
// to have the required crypto?)
// We default to UNCHECKED instead of BOGUS. This could be wrong.
return SecurityStatus.UNCHECKED;
}
/**
* Verify an RRset against a particular signature.
*
* @return DNSSEC.Secure if the signature verfied, DNSSEC.Failed if it did
* not verify (for any reason), and DNSSEC.Insecure if verification
* could not be completed (usually because the public key was not
* available).
*/
public byte verifySignature(RRset rrset, RRSIGRecord sigrec, RRset key_rrset) {
byte result = checkSignature(rrset, sigrec);
if (result != SecurityStatus.SECURE) {
return result;
}
List<DNSKEYRecord> keys = findKey(key_rrset, sigrec);
if (keys == null) {
log.trace("could not find appropriate key");
return SecurityStatus.BOGUS;
}
byte status = SecurityStatus.UNCHECKED;
for (DNSKEYRecord key : keys) {
status = verifySignature(rrset, sigrec, key);
if (status == SecurityStatus.SECURE) {
break;
}
}
return status;
}
/**
* Verifies an RRset. This routine does not modify the RRset. This RRset is
* presumed to be verifiable, and the correct DNSKEY rrset is presumed to
* have been found.
*
* @return SecurityStatus.SECURE if the rrest verified positively,
* SecurityStatus.BOGUS otherwise.
*/
@SuppressWarnings("unchecked")
public byte verify(RRset rrset, RRset key_rrset) {
Iterator i = rrset.sigs();
if (!i.hasNext()) {
log.info("RRset failed to verify due to lack of signatures");
return SecurityStatus.BOGUS;
}
while (i.hasNext()) {
RRSIGRecord sigrec = (RRSIGRecord) i.next();
byte res = verifySignature(rrset, sigrec, key_rrset);
if (res == SecurityStatus.SECURE) {
return res;
}
}
log.info("RRset failed to verify: all signatures were BOGUS");
return SecurityStatus.BOGUS;
}
/**
* Verify an RRset against a single DNSKEY. Use this when you must be
* certain that an RRset signed and verifies with a particular DNSKEY (as
* opposed to a particular DNSKEY rrset).
*
* @param rrset
* The rrset to verify.
* @param dnskey
* The DNSKEY to verify with.
* @return SecurityStatus.SECURE if the rrset verified, BOGUS otherwise.
*/
@SuppressWarnings("unchecked")
public byte verify(RRset rrset, DNSKEYRecord dnskey) {
// Iterate over RRSIGS
Iterator i = rrset.sigs();
if (!i.hasNext()) {
log.info("RRset failed to verify due to lack of signatures");
return SecurityStatus.BOGUS;
}
while (i.hasNext()) {
RRSIGRecord sigrec = (RRSIGRecord) i.next();
// Skip RRSIGs that do not match our given key's footprint.
if (sigrec.getFootprint() != dnskey.getFootprint()) {
continue;
}
byte res = verifySignature(rrset, sigrec, dnskey);
if (res == SecurityStatus.SECURE) {
return res;
}
}
log.info("RRset failed to verify: all signatures were BOGUS");
return SecurityStatus.BOGUS;
}
public boolean supportsAlgorithm(int algorithm) {
return mAlgorithmMap.containsKey(new Integer(algorithm));
}
public boolean supportsAlgorithm(Name private_id) {
return mAlgorithmMap.containsKey(private_id);
}
public int baseAlgorithm(int algorithm) {
switch (algorithm) {
case DNSSEC.RSAMD5:
case DNSSEC.RSASHA1:
return RSA;
case DNSSEC.DSA:
return DSA;
}
AlgEntry entry = (AlgEntry) mAlgorithmMap.get(new Integer(algorithm));
if (entry == null) {
return UNKNOWN;
}
if (entry.isDSA) {
return DSA;
}
return RSA;
}
/** @return the appropriate Signature object for this keypair. */
private Signature getSignature(int algorithm) {
Signature s = null;
try {
AlgEntry entry = (AlgEntry) mAlgorithmMap.get(new Integer(algorithm));
if (entry == null) {
log.info("DNSSEC algorithm " + algorithm + " not recognized.");
return null;
}
// TODO: should we cache the instance?
s = Signature.getInstance(entry.jcaName);
} catch (NoSuchAlgorithmException e) {
log.error("error getting Signature object", e);
}
return s;
}
private static class AlgEntry {
public String jcaName;
public boolean isDSA;
public int dnssecAlg;
public AlgEntry(String name, int dnssecAlg, boolean isDSA) {
jcaName = name;
this.dnssecAlg = dnssecAlg;
this.isDSA = isDSA;
}
}
// TODO: enable private algorithm support in dnsjava.
// Right now, this cannot be used because the DNSKEYRecord object doesn't
// give us
// the private key name.
// private Signature getSignature(Name private_alg)
// {
// Signature s = null;
//
// try
// {
// String alg_id = (String) mAlgorithmMap.get(private_alg);
// if (alg_id == null)
// {
// log.debug("DNSSEC private algorithm '" + private_alg
// + "' not recognized.");
// return null;
// }
//
// s = Signature.getInstance(alg_id);
// }
// catch (NoSuchAlgorithmException e)
// {
// log.error("error getting Signature object", e);
// }
//
// return s;
// }
}

View File

@@ -0,0 +1,884 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
import com.verisign.tat.dnssec.SignUtils.ByteArrayComparator;
import org.apache.log4j.Logger;
import org.xbill.DNS.*;
import org.xbill.DNS.utils.base32;
import java.security.NoSuchAlgorithmException;
import java.util.*;
public class NSEC3ValUtils {
// FIXME: should probably refactor to handle different NSEC3 parameters more
// efficiently.
// Given a list of NSEC3 RRs, they should be grouped according to
// parameters. The idea is to hash and compare for each group independently,
// instead of having to skip NSEC3 RRs with the wrong parameters.
private static Name asterisk_label = Name.fromConstantString("*");
private static Logger st_log = Logger.getLogger(NSEC3ValUtils.class);
private static final base32 b32 = new base32(base32.Alphabet.BASE32HEX,
false, false);
public static boolean supportsHashAlgorithm(int alg) {
if (alg == NSEC3Record.SHA1_DIGEST_ID) {
return true;
}
return false;
}
public static void stripUnknownAlgNSEC3s(List<NSEC3Record> nsec3s) {
if (nsec3s == null) {
return;
}
for (ListIterator<NSEC3Record> i = nsec3s.listIterator(); i.hasNext();) {
NSEC3Record nsec3 = i.next();
if (!supportsHashAlgorithm(nsec3.getHashAlgorithm())) {
i.remove();
}
}
}
public static boolean isOptOut(NSEC3Record nsec3) {
return (nsec3.getFlags() & NSEC3Record.Flags.OPT_OUT) == NSEC3Record.Flags.OPT_OUT;
}
/**
* Given a list of NSEC3Records that are part of a message, determine the
* NSEC3 parameters (hash algorithm, iterations, and salt) present. If there
* is more than one distinct grouping, return null;
*
* @param nsec3s
* A list of NSEC3Record object.
* @return A set containing a number of objects (NSEC3Parameter objects)
* that correspond to each distinct set of parameters, or null if
* the nsec3s list was empty.
*/
public static NSEC3Parameters nsec3Parameters(List<NSEC3Record> nsec3s) {
if ((nsec3s == null) || (nsec3s.size() == 0)) {
return null;
}
NSEC3Parameters params = new NSEC3Parameters((NSEC3Record) nsec3s.get(
0));
ByteArrayComparator bac = new ByteArrayComparator();
for (NSEC3Record nsec3 : nsec3s) {
if (!params.match(nsec3, bac)) {
return null;
}
}
return params;
}
/**
* Given a hash and an a zone name, construct an NSEC3 ownername.
*
* @param hash
* The hash of an original name.
* @param zonename
* The zone to use in constructing the NSEC3 name.
* @return The NSEC3 name.
*/
private static Name hashName(byte [] hash, Name zonename) {
try {
return new Name(b32.toString(hash).toLowerCase(), zonename);
} catch (TextParseException e) {
// Note, this should never happen.
return null;
}
}
/**
* Given a set of NSEC3 parameters, hash a name.
*
* @param name
* The name to hash.
* @param params
* The parameters to hash with.
* @return The hash.
*/
private static byte [] hash(Name name, NSEC3Parameters params) {
try {
return params.hash(name);
} catch (NoSuchAlgorithmException e) {
st_log.warn("Did not recognize hash algorithm: " + params.alg);
return null;
}
}
private static byte[] hash(Name name, NSEC3Record nsec3) {
try {
return nsec3.hashName(name);
} catch (NoSuchAlgorithmException e) {
st_log.warn("Did not recognize hash algorithm: " + nsec3.getHashAlgorithm());
return null;
}
}
/**
* Given the name of a closest encloser, return the name *.closest_encloser.
*
* @param closestEncloser
* The name to start with.
* @return The wildcard name.
*/
private static Name ceWildcard(Name closestEncloser) {
try {
Name wc = Name.concatenate(asterisk_label, closestEncloser);
return wc;
} catch (NameTooLongException e) {
return null;
}
}
/**
* Given a qname and its proven closest encloser, calculate the "next
* closest" name. Basically, this is the name that is one label longer than
* the closest encloser that is still a subdomain of qname.
*
* @param qname
* The qname.
* @param closestEncloser
* The closest encloser name.
* @return The next closer name.
*/
private static Name nextClosest(Name qname, Name closestEncloser) {
int strip = qname.labels() - closestEncloser.labels() - 1;
return (strip > 0) ? new Name(qname, strip) : qname;
}
/**
* Find the NSEC3Record that matches a hash of a name.
*
* @param hash
* The pre-calculated hash of a name.
* @param zonename
* The name of the zone that the NSEC3s are from.
* @param nsec3s
* A list of NSEC3Records from a given message.
* @param params
* The parameters used for calculating the hash.
* @param bac
* An already allocated ByteArrayComparator, for reuse. This may
* be null.
*
* @return The matching NSEC3Record, if one is present.
*/
private static NSEC3Record findMatchingNSEC3(byte [] hash, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac) {
Name n = hashName(hash, zonename);
for (NSEC3Record nsec3 : nsec3s) {
// Skip nsec3 records that are using different parameters.
if (!params.match(nsec3, bac)) {
continue;
}
if (n.equals(nsec3.getName())) {
return nsec3;
}
}
return null;
}
/**
* Given a hash and a candidate NSEC3Record, determine if that NSEC3Record
* covers the hash. Covers specifically means that the hash is in between
* the owner and next hashes and does not equal either.
*
* @param nsec3
* The candidate NSEC3Record.
* @param hash
* The precalculated hash.
* @param bac
* An already allocated comparator. This may be null.
* @return True if the NSEC3Record covers the hash.
*/
private static boolean nsec3Covers(NSEC3Record nsec3, byte [] hash,
ByteArrayComparator bac) {
byte [] owner = hash(nsec3.getName(), nsec3);
byte [] next = nsec3.getNext();
// This is the "normal case: owner < next and owner < hash < next
if ((bac.compare(owner, hash) < 0) && (bac.compare(hash, next) < 0)) {
return true;
}
// this is the end of zone case: next < owner && hash > owner || hash <
// next
if ((bac.compare(next, owner) <= 0) &&
((bac.compare(hash, next) < 0) ||
(bac.compare(owner, hash) < 0))) {
return true;
}
// Otherwise, the NSEC3 does not cover the hash.
return false;
}
/**
* Given a pre-hashed name, find a covering NSEC3 from among a list of
* NSEC3s.
*
* @param hash
* The hash to consider.
* @param zonename
* The name of the zone.
* @param nsec3s
* The list of NSEC3s present in a message.
* @param params
* The NSEC3 parameters used to generate the hash -- NSEC3s that
* do not use those parameters will be skipped.
*
* @return A covering NSEC3 if one is present, null otherwise.
*/
private static NSEC3Record findCoveringNSEC3(byte [] hash, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac) {
ByteArrayComparator comparator = new ByteArrayComparator();
for (NSEC3Record nsec3 : nsec3s) {
if (!params.match(nsec3, bac)) {
continue;
}
if (nsec3Covers(nsec3, hash, comparator)) {
return nsec3;
}
}
return null;
}
/**
* Given a name and a list of NSEC3s, find the candidate closest encloser.
* This will be the first ancestor of 'name' (including itself) to have a
* matching NSEC3 RR.
*
* @param name
* The name the start with.
* @param zonename
* The name of the zone that the NSEC3s came from.
* @param nsec3s
* The list of NSEC3s.
* @param nsec3params
* The NSEC3 parameters.
* @param bac
* A pre-allocated comparator. May be null.
*
* @return A CEResponse containing the closest encloser name and the NSEC3
* RR that matched it, or null if there wasn't one.
*/
private static CEResponse findClosestEncloser(Name name, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac) {
Name n = name;
NSEC3Record nsec3;
// This scans from longest name to shortest, so the first match we find
// is the only viable candidate.
// FIXME: modify so that the NSEC3 matching the zone apex need not be
// present.
while (n.labels() >= zonename.labels()) {
nsec3 = findMatchingNSEC3(hash(n, params), zonename,
nsec3s, params, bac);
if (nsec3 != null) {
return new CEResponse(n, nsec3);
}
n = new Name(n, 1);
}
return null;
}
/**
* Given a List of nsec3 RRs, find and prove the closest encloser to qname.
*
* @param qname
* The qname in question.
* @param zonename
* The name of the zone that the NSEC3 RRs come from.
* @param nsec3s
* The list of NSEC3s found the this response (already verified).
* @param params
* The NSEC3 parameters found in the response.
* @param bac
* A pre-allocated comparator. May be null.
* @param proveDoesNotExist
* If true, then if the closest encloser turns out to be qname,
* then null is returned.
* @return null if the proof isn't completed. Otherwise, return a CEResponse
* object which contains the closest encloser name and the NSEC3
* that matches it.
*/
private static CEResponse proveClosestEncloser(Name qname, Name zonename,
List<NSEC3Record> nsec3s, NSEC3Parameters params,
ByteArrayComparator bac, boolean proveDoesNotExist) {
CEResponse candidate = findClosestEncloser(qname, zonename, nsec3s,
params, bac);
if (candidate == null) {
st_log.debug("proveClosestEncloser: could not find a " +
"candidate for the closest encloser.");
return null;
}
if (candidate.closestEncloser.equals(qname)) {
if (proveDoesNotExist) {
st_log.debug("proveClosestEncloser: proved that qname existed!");
return null;
}
// otherwise, we need to nothing else to prove that qname is its own
// closest encloser.
return candidate;
}
// If the closest encloser is actually a delegation, then the response
// should have been a referral. If it is a DNAME, then it should have
// been
// a DNAME response.
if (candidate.ce_nsec3.hasType(Type.NS) &&
!candidate.ce_nsec3.hasType(Type.SOA)) {
st_log.debug("proveClosestEncloser: closest encloser " +
"was a delegation!");
return null;
}
if (candidate.ce_nsec3.hasType(Type.DNAME)) {
st_log.debug("proveClosestEncloser: closest encloser was a DNAME!");
return null;
}
// Otherwise, we need to show that the next closer name is covered.
Name nextClosest = nextClosest(qname, candidate.closestEncloser);
byte [] nc_hash = hash(nextClosest, params);
candidate.nc_nsec3 = findCoveringNSEC3(nc_hash, zonename, nsec3s,
params, bac);
if (candidate.nc_nsec3 == null) {
st_log.debug("Could not find proof that the " +
"closest encloser was the closest encloser");
return null;
}
return candidate;
}
private static int maxIterations(int baseAlg, int keysize) {
switch (baseAlg) {
case DnsSecVerifier.RSA:
if (keysize == 0) {
return 2500; // the max at 4096
}
if (keysize > 2048) {
return 2500;
}
if (keysize > 1024) {
return 500;
}
if (keysize > 0) {
return 150;
}
break;
case DnsSecVerifier.DSA:
if (keysize == 0) {
return 5000; // the max at 2048;
}
if (keysize > 1024) {
return 5000;
}
if (keysize > 0) {
return 1500;
}
break;
}
return -1;
}
@SuppressWarnings("unchecked")
private static boolean validIterations(NSEC3Parameters nsec3params,
RRset dnskey_rrset, DnsSecVerifier verifier) {
// for now, we return the maximum iterations based simply on the key
// algorithms that may have been used to sign the NSEC3 RRsets.
int max_iterations = 0;
for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) {
DNSKEYRecord dnskey = (DNSKEYRecord) i.next();
int baseAlg = verifier.baseAlgorithm(dnskey.getAlgorithm());
int iters = maxIterations(baseAlg, 0);
max_iterations = (max_iterations < iters) ? iters
: max_iterations;
}
if (nsec3params.iterations > max_iterations) {
return false;
}
return true;
}
/**
* Determine if all of the NSEC3s in a response are legally ignoreable
* (i.e., their presence should lead to an INSECURE result). Currently, this
* is solely based on iterations.
*
* @param nsec3s
* The list of NSEC3s. If there is more than one set of NSEC3
* parameters present, this test will not be performed.
* @param dnskey_rrset
* The set of validating DNSKEYs.
* @param verifier
* The verifier used to verify the NSEC3 RRsets. This is solely
* used to map algorithm aliases.
* @return true if all of the NSEC3s can be legally ignored, false if not.
*/
public static boolean allNSEC3sIgnoreable(List<NSEC3Record> nsec3s,
RRset dnskey_rrset, DnsSecVerifier verifier) {
NSEC3Parameters params = nsec3Parameters(nsec3s);
if (params == null) {
return false;
}
return !validIterations(params, dnskey_rrset, verifier);
}
/**
* Determine if the set of NSEC3 records provided with a response prove NAME
* ERROR. This means that the NSEC3s prove a) the closest encloser exists,
* b) the direct child of the closest encloser towards qname doesn't exist,
* and c) *.closest encloser does not exist.
*
* @param nsec3s
* The list of NSEC3s.
* @param qname
* The query name to check against.
* @param zonename
* This is the name of the zone that the NSEC3s belong to. This
* may be discovered in any number of ways. A good one is to use
* the signerName from the NSEC3 record's RRSIG.
* @return SecurityStatus.SECURE of the Name Error is proven by the NSEC3
* RRs, BOGUS if not, INSECURE if all of the NSEC3s could be validly
* ignored.
*/
public static boolean proveNameError(List<NSEC3Record> nsec3s, Name qname,
Name zonename) {
if ((nsec3s == null) || (nsec3s.size() == 0)) {
return false;
}
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
if (nsec3params == null) {
st_log.debug("Could not find a single set of " +
"NSEC3 parameters (multiple parameters present).");
return false;
}
ByteArrayComparator bac = new ByteArrayComparator();
// First locate and prove the closest encloser to qname. We will use the
// variant that fails if the closest encloser turns out to be qname.
CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s,
nsec3params, bac, true);
if (ce == null) {
st_log.debug("proveNameError: failed to prove a closest encloser.");
return false;
}
// At this point, we know that qname does not exist. Now we need to
// prove
// that the wildcard does not exist.
Name wc = ceWildcard(ce.closestEncloser);
byte [] wc_hash = hash(wc, nsec3params);
NSEC3Record nsec3 = findCoveringNSEC3(wc_hash, zonename, nsec3s,
nsec3params, bac);
if (nsec3 == null) {
st_log.debug("proveNameError: could not prove that the " +
"applicable wildcard did not exist.");
return false;
}
return true;
}
/**
* Determine if the NSEC3s provided in a response prove the NOERROR/NODATA
* status. There are a number of different variants to this:
*
* 1) Normal NODATA -- qname is matched to an NSEC3 record, type is not
* present.
*
* 2) ENT NODATA -- because there must be NSEC3 record for
* empty-non-terminals, this is the same as #1.
*
* 3) NSEC3 ownername NODATA -- qname matched an existing, lone NSEC3
* ownername, but qtype was not NSEC3. NOTE: as of nsec-05, this case no
* longer exists.
*
* 4) Wildcard NODATA -- A wildcard matched the name, but not the type.
*
* 5) Opt-In DS NODATA -- the qname is covered by an opt-in span and qtype
* == DS. (or maybe some future record with the same parent-side-only
* property)
*
* @param nsec3s
* The NSEC3Records to consider.
* @param qname
* The qname in question.
* @param qtype
* The qtype in question.
* @param zonename
* The name of the zone that the NSEC3s came from.
* @return true if the NSEC3s prove the proposition.
*/
public static boolean proveNodata(List<NSEC3Record> nsec3s, Name qname,
int qtype, Name zonename) {
if ((nsec3s == null) || (nsec3s.size() == 0)) {
return false;
}
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
if (nsec3params == null) {
st_log.debug("could not find a single set of " +
"NSEC3 parameters (multiple parameters present)");
return false;
}
ByteArrayComparator bac = new ByteArrayComparator();
NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params),
zonename, nsec3s, nsec3params, bac);
// Cases 1 & 2.
if (nsec3 != null) {
if (nsec3.hasType(qtype)) {
st_log.debug(
"proveNodata: Matching NSEC3 proved that type existed!");
return false;
}
if (nsec3.hasType(Type.CNAME)) {
st_log.debug("proveNodata: Matching NSEC3 proved " +
"that a CNAME existed!");
return false;
}
return true;
}
// For cases 3 - 5, we need the proven closest encloser, and it can't
// match qname. Although, at this point, we know that it won't since we
// just checked that.
CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s,
nsec3params, bac, true);
// At this point, not finding a match or a proven closest encloser is a
// problem.
if (ce == null) {
st_log.debug("proveNodata: did not match qname, " +
"nor found a proven closest encloser.");
return false;
}
// Case 3: REMOVED
// Case 4:
Name wc = ceWildcard(ce.closestEncloser);
nsec3 = findMatchingNSEC3(hash(wc, nsec3params), zonename, nsec3s,
nsec3params, bac);
if (nsec3 != null) {
if (nsec3.hasType(qtype)) {
st_log.debug("proveNodata: matching wildcard had qtype!");
return false;
}
return true;
}
// Case 5.
if (qtype != Type.DS) {
st_log.debug("proveNodata: could not find matching NSEC3, " +
"nor matching wildcard, and qtype is not DS -- no more options.");
return false;
}
// We need to make sure that the covering NSEC3 is opt-in.
if (!isOptOut(ce.nc_nsec3)) {
st_log.debug("proveNodata: covering NSEC3 was not " +
"opt-in in an opt-in DS NOERROR/NODATA case.");
return false;
}
return true;
}
/**
* Prove that a positive wildcard match was appropriate (no direct match
* RRset).
*
* @param nsec3s
* The NSEC3 records to work with.
* @param qname
* The qname that was matched to the wildcard
* @param zonename
* The name of the zone that the NSEC3s come from.
* @param wildcard
* The purported wildcard that matched.
* @return true if the NSEC3 records prove this case.
*/
public static boolean proveWildcard(List<NSEC3Record> nsec3s, Name qname,
Name zonename, Name wildcard) {
if ((nsec3s == null) || (nsec3s.size() == 0)) {
return false;
}
if ((qname == null) || (wildcard == null)) {
return false;
}
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
if (nsec3params == null) {
st_log.debug(
"couldn't find a single set of NSEC3 parameters (multiple parameters present).");
return false;
}
ByteArrayComparator bac = new ByteArrayComparator();
// We know what the (purported) closest encloser is by just looking at
// the
// supposed generating wildcard.
CEResponse candidate = new CEResponse(new Name(wildcard, 1), null);
// Now we still need to prove that the original data did not exist.
// Otherwise, we need to show that the next closer name is covered.
Name nextClosest = nextClosest(qname, candidate.closestEncloser);
candidate.nc_nsec3 = findCoveringNSEC3(hash(nextClosest, nsec3params),
zonename, nsec3s, nsec3params, bac);
if (candidate.nc_nsec3 == null) {
st_log.debug("proveWildcard: did not find a covering NSEC3 " +
"that covered the next closer name to " + qname + " from " +
candidate.closestEncloser + " (derived from wildcard " +
wildcard + ")");
return false;
}
return true;
}
/**
* Prove that a DS response either had no DS, or wasn't a delegation point.
*
* Fundamentally there are two cases here: normal NODATA and Opt-In NODATA.
*
* @param nsec3s
* The NSEC3 RRs to examine.
* @param qname
* The name of the DS in question.
* @param zonename
* The name of the zone that the NSEC3 RRs come from.
*
* @return SecurityStatus.SECURE if it was proven that there is no DS in a
* secure (i.e., not opt-in) way, SecurityStatus.INSECURE if there
* was no DS in an insecure (i.e., opt-in) way,
* SecurityStatus.INDETERMINATE if it was clear that this wasn't a
* delegation point, and SecurityStatus.BOGUS if the proofs don't
* work out.
*/
public static byte proveNoDS(List<NSEC3Record> nsec3s, Name qname,
Name zonename) {
if ((nsec3s == null) || (nsec3s.size() == 0)) {
return SecurityStatus.BOGUS;
}
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
if (nsec3params == null) {
st_log.debug("couldn't find a single set of " +
"NSEC3 parameters (multiple parameters present).");
return SecurityStatus.BOGUS;
}
ByteArrayComparator bac = new ByteArrayComparator();
// Look for a matching NSEC3 to qname -- this is the normal NODATA case.
NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params),
zonename, nsec3s, nsec3params, bac);
if (nsec3 != null) {
// If the matching NSEC3 has the SOA bit set, it is from the wrong
// zone (the child instead of the parent). If it has the DS bit set,
// then we were lied to.
if (nsec3.hasType(Type.SOA) || nsec3.hasType(Type.DS)) {
return SecurityStatus.BOGUS;
}
// If the NSEC3 RR doesn't have the NS bit set, then this wasn't a
// delegation point.
if (!nsec3.hasType(Type.NS)) {
return SecurityStatus.INDETERMINATE;
}
// Otherwise, this proves no DS.
return SecurityStatus.SECURE;
}
// Otherwise, we are probably in the opt-in case.
CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s,
nsec3params, bac, true);
if (ce == null) {
return SecurityStatus.BOGUS;
}
// If we had the closest encloser proof, then we need to check that the
// covering NSEC3 was opt-in -- the proveClosestEncloser step already
// checked to see if the closest encloser was a delegation or DNAME.
if (isOptOut(ce.nc_nsec3)) {
return SecurityStatus.SECURE;
}
return SecurityStatus.BOGUS;
}
/**
* This is a class to encapsulate a unique set of NSEC3 parameters:
* algorithm, iterations, and salt.
*/
private static class NSEC3Parameters {
public int alg;
public byte [] salt;
public int iterations;
private NSEC3PARAMRecord nsec3paramrec;
public NSEC3Parameters(NSEC3Record r) {
alg = r.getHashAlgorithm();
salt = r.getSalt();
iterations = r.getIterations();
nsec3paramrec = new NSEC3PARAMRecord(Name.root, DClass.IN, 0,
alg, 0, iterations, salt);
}
public boolean match(NSEC3Record r, ByteArrayComparator bac) {
if (r.getHashAlgorithm() != alg) {
return false;
}
if (r.getIterations() != iterations) {
return false;
}
if ((salt == null) && (r.getSalt() != null)) {
return false;
}
if (salt == null) {
return true;
}
if (bac == null) {
bac = new ByteArrayComparator();
}
return bac.compare(r.getSalt(), salt) == 0;
}
public byte[] hash(Name name) throws NoSuchAlgorithmException {
return nsec3paramrec.hashName(name);
}
}
/**
* This is just a simple class to encapsulate the response to a closest
* encloser proof.
*/
private static class CEResponse {
public Name closestEncloser;
public NSEC3Record ce_nsec3;
public NSEC3Record nc_nsec3;
public CEResponse(Name ce, NSEC3Record nsec3) {
this.closestEncloser = ce;
this.ce_nsec3 = nsec3;
}
}
}

View File

@@ -0,0 +1,382 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
import org.xbill.DNS.*;
import java.util.*;
/**
* This class represents a DNS message with resolver/validator state.
*/
public class SMessage {
private static SRRset [] empty_srrset_array = new SRRset[0];
private Header mHeader;
private Record mQuestion;
private OPTRecord mOPTRecord;
private List<SRRset> [] mSection;
private SecurityStatus mSecurityStatus;
@SuppressWarnings("unchecked")
public SMessage(Header h) {
mSection = (List<SRRset> []) new List[3];
mHeader = h;
mSecurityStatus = new SecurityStatus();
}
public SMessage(int id) {
this(new Header(id));
}
public SMessage() {
this(new Header(0));
}
public SMessage(Message m) {
this(m.getHeader());
mQuestion = m.getQuestion();
mOPTRecord = m.getOPT();
for (int i = Section.ANSWER; i <= Section.ADDITIONAL; i++) {
RRset [] rrsets = m.getSectionRRsets(i);
for (int j = 0; j < rrsets.length; j++) {
addRRset(rrsets[j], i);
}
}
}
public Header getHeader() {
return mHeader;
}
public void setHeader(Header h) {
mHeader = h;
}
public void setQuestion(Record r) {
mQuestion = r;
}
public Record getQuestion() {
return mQuestion;
}
public Name getQName() {
return getQuestion().getName();
}
public int getQType() {
return getQuestion().getType();
}
public int getQClass() {
return getQuestion().getDClass();
}
public void setOPT(OPTRecord r) {
mOPTRecord = r;
}
public OPTRecord getOPT() {
return mOPTRecord;
}
public List<SRRset> getSectionList(int section) {
if ((section <= Section.QUESTION) || (section > Section.ADDITIONAL)) {
throw new IllegalArgumentException("Invalid section.");
}
if (mSection[section - 1] == null) {
mSection[section - 1] = new LinkedList<SRRset>();
}
return (List<SRRset>) mSection[section - 1];
}
public void addRRset(SRRset srrset, int section) {
if ((section <= Section.QUESTION) || (section > Section.ADDITIONAL)) {
throw new IllegalArgumentException("Invalid section");
}
if (srrset.getType() == Type.OPT) {
mOPTRecord = (OPTRecord) srrset.first();
return;
}
List<SRRset> sectionList = getSectionList(section);
sectionList.add(srrset);
}
public void addRRset(RRset rrset, int section) {
if (rrset instanceof SRRset) {
addRRset((SRRset) rrset, section);
return;
}
SRRset srrset = new SRRset(rrset);
addRRset(srrset, section);
}
public void prependRRsets(List<SRRset> rrsets, int section) {
if ((section <= Section.QUESTION) || (section > Section.ADDITIONAL)) {
throw new IllegalArgumentException("Invalid section");
}
List<SRRset> sectionList = getSectionList(section);
sectionList.addAll(0, rrsets);
}
public SRRset [] getSectionRRsets(int section) {
List<SRRset> slist = getSectionList(section);
return (SRRset []) slist.toArray(empty_srrset_array);
}
public SRRset [] getSectionRRsets(int section, int qtype) {
List<SRRset> slist = getSectionList(section);
if (slist.size() == 0) {
return new SRRset[0];
}
ArrayList<SRRset> result = new ArrayList<SRRset>(slist.size());
for (SRRset rrset : slist) {
if (rrset.getType() == qtype) {
result.add(rrset);
}
}
return (SRRset []) result.toArray(empty_srrset_array);
}
public void deleteRRset(SRRset rrset, int section) {
List<SRRset> slist = getSectionList(section);
if (slist.size() == 0) {
return;
}
slist.remove(rrset);
}
public void clear(int section) {
if ((section < Section.QUESTION) || (section > Section.ADDITIONAL)) {
throw new IllegalArgumentException("Invalid section.");
}
if (section == Section.QUESTION) {
mQuestion = null;
return;
}
if (section == Section.ADDITIONAL) {
mOPTRecord = null;
}
mSection[section - 1] = null;
}
public void clear() {
for (int s = Section.QUESTION; s <= Section.ADDITIONAL; s++) {
clear(s);
}
}
public int getRcode() {
// FIXME: might want to do what Message does and handle extended rcodes.
return mHeader.getRcode();
}
public int getStatus() {
return mSecurityStatus.getStatus();
}
public void setStatus(byte status) {
mSecurityStatus.setStatus(status);
}
public SecurityStatus getSecurityStatus() {
return mSecurityStatus;
}
public void setSecurityStatus(SecurityStatus s) {
if (s == null) {
return;
}
mSecurityStatus = s;
}
public Message getMessage() {
// Generate our new message.
Message m = new Message(mHeader.getID());
// Convert the header
// We do this for two reasons: 1) setCount() is package scope, so we
// can't do that, and 2) setting the header on a message after creating
// the message frequently gets stuff out of sync, leading to malformed
// wire format messages.
Header h = m.getHeader();
h.setOpcode(mHeader.getOpcode());
h.setRcode(mHeader.getRcode());
for (int i = 0; i < 16; i++) {
if (Flags.isFlag(i)) {
if (mHeader.getFlag(i)) {
h.setFlag(i);
} else {
h.unsetFlag(i);
}
}
}
// Add all the records. -- this will set the counts correctly in the
// message header.
if (mQuestion != null) {
m.addRecord(mQuestion, Section.QUESTION);
}
for (int sec = Section.ANSWER; sec <= Section.ADDITIONAL; sec++) {
List<SRRset> slist = getSectionList(sec);
for (SRRset rrset : slist) {
for (Iterator<Record> j = rrset.rrs(); j.hasNext();) {
m.addRecord(j.next(), sec);
}
for (Iterator<RRSIGRecord> j = rrset.sigs(); j.hasNext();) {
m.addRecord(j.next(), sec);
}
}
}
if (mOPTRecord != null) {
m.addRecord(mOPTRecord, Section.ADDITIONAL);
}
return m;
}
public int getCount(int section) {
if (section == Section.QUESTION) {
return (mQuestion == null) ? 0 : 1;
}
List<SRRset> sectionList = getSectionList(section);
if (sectionList == null) {
return 0;
}
if (sectionList.size() == 0) {
return 0;
}
int count = 0;
for (SRRset sr : sectionList) {
count += sr.totalSize();
}
return count;
}
public String toString() {
return getMessage().toString();
}
/**
* Find a specific (S)RRset in a given section.
*
* @param name
* the name of the RRset.
* @param type
* the type of the RRset.
* @param dclass
* the class of the RRset.
* @param section
* the section to look in (ANSWER -> ADDITIONAL)
*
* @return The SRRset if found, null otherwise.
*/
public SRRset findRRset(Name name, int type, int dclass, int section) {
if ((section <= Section.QUESTION) || (section > Section.ADDITIONAL)) {
throw new IllegalArgumentException("Invalid section.");
}
SRRset [] rrsets = getSectionRRsets(section);
for (int i = 0; i < rrsets.length; i++) {
if (rrsets[i].getName().equals(name) &&
(rrsets[i].getType() == type) &&
(rrsets[i].getDClass() == dclass)) {
return rrsets[i];
}
}
return null;
}
/**
* Find an "answer" RRset. This will look for RRsets in the ANSWER section
* that match the <qname,qtype,qclass>, taking into consideration CNAMEs.
*
* @param qname
* The starting search name.
* @param qtype
* The search type.
* @param qclass
* The search class.
*
* @return a SRRset matching the query. This SRRset may have a different
* name from qname, due to following a CNAME chain.
*/
public SRRset findAnswerRRset(Name qname, int qtype, int qclass) {
SRRset [] srrsets = getSectionRRsets(Section.ANSWER);
for (int i = 0; i < srrsets.length; i++) {
if (srrsets[i].getName().equals(qname) &&
(srrsets[i].getType() == Type.CNAME)) {
CNAMERecord cname = (CNAMERecord) srrsets[i].first();
qname = cname.getTarget();
continue;
}
if (srrsets[i].getName().equals(qname) &&
(srrsets[i].getType() == qtype) &&
(srrsets[i].getDClass() == qclass)) {
return srrsets[i];
}
}
return null;
}
}

View File

@@ -0,0 +1,144 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
import org.xbill.DNS.*;
import java.util.*;
/**
* A version of the RRset class overrides the standard security status.
*/
public class SRRset extends RRset {
private SecurityStatus mSecurityStatus;
/** Create a new, blank SRRset. */
public SRRset() {
super();
mSecurityStatus = new SecurityStatus();
}
/**
* Create a new SRRset from an existing RRset. This SRRset will contain that
* same internal Record objects as the original RRset.
*/
@SuppressWarnings("unchecked")
public SRRset(RRset r) {
this();
for (Iterator i = r.rrs(); i.hasNext();) {
addRR((Record) i.next());
}
for (Iterator i = r.sigs(); i.hasNext();) {
addRR((Record) i.next());
}
}
/**
* Return the current security status (generally: UNCHECKED, BOGUS, or
* SECURE).
*/
public int getSecurity() {
return getSecurityStatus();
}
/**
* Return the current security status (generally: UNCHECKED, BOGUS, or
* SECURE).
*/
public byte getSecurityStatus() {
return mSecurityStatus.getStatus();
}
/**
* Set the current security status for this SRRset. This status will be
* shared amongst all copies of this SRRset (created with cloneSRRset())
*/
public void setSecurityStatus(byte status) {
mSecurityStatus.setStatus(status);
}
@SuppressWarnings("unchecked")
public Iterator<Record> rrs() {
return (Iterator<Record>) super.rrs();
}
@SuppressWarnings("unchecked")
public Iterator<RRSIGRecord> sigs() {
return (Iterator<RRSIGRecord>) super.sigs();
}
public int totalSize() {
int num_sigs = 0;
for (Iterator<RRSIGRecord> i = sigs(); i.hasNext();) {
num_sigs++;
i.next();
}
return size() + num_sigs;
}
/**
* @return The total number of records (data + sigs) in the SRRset.
*/
public int getNumRecords() {
return totalSize();
}
public RRSIGRecord firstSig() {
for (Iterator<RRSIGRecord> i = sigs(); i.hasNext();) {
return i.next();
}
return null;
}
/**
* @return true if this RRset has RRSIG records that cover data records.
* (i.e., RRSIG SRRsets return false)
*/
public boolean isSigned() {
if (getType() == Type.RRSIG) {
return false;
}
return firstSig() != null;
}
/**
* @return The "signer" name for this SRRset, if signed, or null if not.
*/
public Name getSignerName() {
RRSIGRecord sig = (RRSIGRecord) firstSig();
if (sig == null) {
return null;
}
return sig.getSigner();
}
}

View File

@@ -0,0 +1,112 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
/**
* Codes for DNSSEC security statuses.
*
* @author davidb
*/
public class SecurityStatus {
public static final byte INVALID = -1;
/**
* UNCHECKED means that object has yet to be validated.
*/
public static final byte UNCHECKED = 0;
/**
* BOGUS means that the object (RRset or message) failed to validate
* (according to local policy), but should have validated.
*/
public static final byte BOGUS = 1;
/**
* BAD is a synonym for BOGUS.
*/
public static final byte BAD = BOGUS;
/**
* INDTERMINATE means that the object is insecure, but not authoritatively
* so. Generally this means that the RRset is not below a configured trust
* anchor.
*/
public static final byte INDETERMINATE = 2;
/**
* INSECURE means that the object is authoritatively known to be insecure.
* Generally this means that this RRset is below a trust anchor, but also
* below a verified, insecure delegation.
*/
public static final byte INSECURE = 3;
/**
* SECURE means that the object (RRset or message) validated according to
* local policy.
*/
public static final byte SECURE = 4;
private byte status;
public SecurityStatus() {
status = UNCHECKED;
}
public SecurityStatus(byte status) {
setStatus(status);
}
public static String string(int status) {
switch (status) {
case INVALID:
return "Invalid";
case BOGUS:
return "Bogus";
case SECURE:
return "Secure";
case INSECURE:
return "Insecure";
case INDETERMINATE:
return "Indeterminate";
case UNCHECKED:
return "Unchecked";
default:
return "UNKNOWN";
}
}
public byte getStatus() {
return status;
}
public void setStatus(byte status) {
this.status = status;
}
}

View File

@@ -0,0 +1,486 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
import org.apache.log4j.Logger;
import org.xbill.DNS.DNSKEYRecord;
import org.xbill.DNS.DNSOutput;
import org.xbill.DNS.Name;
import org.xbill.DNS.RRSIGRecord;
import org.xbill.DNS.RRset;
import org.xbill.DNS.Record;
import org.xbill.DNS.utils.base64;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.security.SignatureException;
import java.security.interfaces.DSAParams;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Date;
import java.util.Iterator;
/**
* This class contains a bunch of utility methods that are generally useful in
* signing and verifying rrsets.
*/
public class SignUtils {
// private static final int DSA_SIGNATURE_LENGTH = 20;
private static final int ASN1_INT = 0x02;
private static final int ASN1_SEQ = 0x30;
public static final int RR_NORMAL = 0;
public static final int RR_DELEGATION = 1;
public static final int RR_GLUE = 2;
public static final int RR_INVALID = 3;
private static Logger log = Logger.getLogger(SignUtils.class);
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rrset
* the RRset being signed.
* @param signer
* the name of the signing key
* @param alg
* the algorithm of the signing key
* @param keyid
* the keyid (or footprint) of the signing key
* @param start
* the SIG inception time.
* @param expire
* the SIG expiration time.
* @param sig_ttl
* the TTL of the resulting SIG record.
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, Name signer,
int alg, int keyid, Date start, Date expire, long sig_ttl) {
return new RRSIGRecord(rrset.getName(), rrset.getDClass(), sig_ttl,
rrset.getType(), alg, rrset.getTTL(), expire, start, keyid, signer,
null);
}
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rrset
* the RRset being signed.
* @param key
* the public KEY RR counterpart to the key being used to sign
* the RRset
* @param start
* the SIG inception time.
* @param expire
* the SIG expiration time.
* @param sig_ttl
* the TTL of the resulting SIG record.
* @return a prototype signature based on the RRset and key information.
*/
public static RRSIGRecord generatePreRRSIG(RRset rrset, DNSKEYRecord key,
Date start, Date expire, long sig_ttl) {
return generatePreRRSIG(rrset, key.getName(), key.getAlgorithm(),
key.getFootprint(), start, expire, sig_ttl);
}
/**
* Generate from some basic information a prototype SIG RR containing
* everything but the actual signature itself.
*
* @param rec
* the DNS record being signed (forming an entire RRset).
* @param key
* the public KEY RR counterpart to the key signing the record.
* @param start
* the SIG inception time.
* @param expire
* the SIG expiration time.
* @param sig_ttl
* the TTL of the result SIG record.
* @return a prototype signature based on the Record and key information.
*/
public static RRSIGRecord generatePreRRSIG(Record rec, DNSKEYRecord key,
Date start, Date expire, long sig_ttl) {
return new RRSIGRecord(rec.getName(), rec.getDClass(), sig_ttl,
rec.getType(), key.getAlgorithm(), rec.getTTL(), expire, start,
key.getFootprint(), key.getName(), null);
}
/**
* Generate the binary image of the prototype SIG RR.
*
* @param presig
* the SIG RR prototype.
* @return the RDATA portion of the prototype SIG record. This forms the
* first part of the data to be signed.
*/
private static byte [] generatePreSigRdata(RRSIGRecord presig) {
// Generate the binary image;
DNSOutput image = new DNSOutput();
// precalculate some things
int start_time = (int) (presig.getTimeSigned().getTime() / 1000);
int expire_time = (int) (presig.getExpire().getTime() / 1000);
Name signer = presig.getSigner();
// first write out the partial SIG record (this is the SIG RDATA
// minus the actual signature.
image.writeU16(presig.getTypeCovered());
image.writeU8(presig.getAlgorithm());
image.writeU8(presig.getLabels());
image.writeU32((int) presig.getOrigTTL());
image.writeU32(expire_time);
image.writeU32(start_time);
image.writeU16(presig.getFootprint());
image.writeByteArray(signer.toWireCanonical());
return image.toByteArray();
}
/**
* Calculate the canonical wire line format of the RRset.
*
* @param rrset
* the RRset to convert.
* @param ttl
* the TTL to use when canonicalizing -- this is generally the
* TTL of the signature if there is a pre-existing signature. If
* not it is just the ttl of the rrset itself.
* @param labels
* the labels field of the signature, or 0.
* @return the canonical wire line format of the rrset. This is the second
* part of data to be signed.
*/
@SuppressWarnings("unchecked")
public static byte [] generateCanonicalRRsetData(RRset rrset, long ttl,
int labels) {
DNSOutput image = new DNSOutput();
if (ttl == 0) {
ttl = rrset.getTTL();
}
Name n = rrset.getName();
if (labels == 0) {
labels = n.labels();
} else {
// correct for Name()'s conception of label count.
labels++;
}
boolean wildcardName = false;
if (n.labels() != labels) {
n = n.wild(n.labels() - labels);
wildcardName = true;
log.trace("Detected wildcard expansion: " + rrset.getName() +
" changed to " + n);
}
// now convert the wire format records in the RRset into a
// list of byte arrays.
ArrayList<byte []> canonical_rrs = new ArrayList<byte []>();
for (Iterator i = rrset.rrs(); i.hasNext();) {
Record r = (Record) i.next();
if ((r.getTTL() != ttl) || wildcardName) {
// If necessary, we need to create a new record with a new ttl
// or ownername.
// In the TTL case, this avoids changing the ttl in the
// response.
r = Record.newRecord(n, r.getType(), r.getDClass(), ttl,
r.rdataToWireCanonical());
}
byte [] wire_fmt = r.toWireCanonical();
canonical_rrs.add(wire_fmt);
}
// put the records into the correct ordering.
// Calculate the offset where the RDATA begins (we have to skip
// past the length byte)
int offset = rrset.getName().toWireCanonical().length +
10;
ByteArrayComparator bac = new ByteArrayComparator(offset, false);
Collections.sort(canonical_rrs, bac);
for (Iterator<byte []> i = canonical_rrs.iterator(); i.hasNext();) {
byte [] wire_fmt_rec = i.next();
image.writeByteArray(wire_fmt_rec);
}
return image.toByteArray();
}
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
* @param rrset
* the RRset to be signed.
* @param presig
* a prototype SIG RR created using the same RRset.
* @return a block of data ready to be signed.
*/
public static byte [] generateSigData(RRset rrset, RRSIGRecord presig)
throws IOException {
byte [] rrset_data = generateCanonicalRRsetData(rrset,
presig.getOrigTTL(), presig.getLabels());
return generateSigData(rrset_data, presig);
}
/**
* Given an RRset and the prototype signature, generate the canonical data
* that is to be signed.
*
* @param rrset_data
* the RRset converted into canonical wire line format (as per
* the canonicalization rules in RFC 2535).
* @param presig
* the prototype signature based on the same RRset represented in
* <code>rrset_data</code>.
* @return a block of data ready to be signed.
*/
public static byte [] generateSigData(byte [] rrset_data, RRSIGRecord presig)
throws IOException {
byte [] sig_rdata = generatePreSigRdata(presig);
ByteArrayOutputStream image = new ByteArrayOutputStream(sig_rdata.length +
rrset_data.length);
image.write(sig_rdata);
image.write(rrset_data);
return image.toByteArray();
}
/**
* Given the actual signature and the prototype signature, combine them and
* return the fully formed RRSIGRecord.
*
* @param signature
* the cryptographic signature, in DNSSEC format.
* @param presig
* the prototype RRSIG RR to add the signature to.
* @return the fully formed RRSIG RR.
*/
public static RRSIGRecord generateRRSIG(byte [] signature,
RRSIGRecord presig) {
return new RRSIGRecord(presig.getName(), presig.getDClass(),
presig.getTTL(), presig.getTypeCovered(), presig.getAlgorithm(),
presig.getOrigTTL(), presig.getExpire(), presig.getTimeSigned(),
presig.getFootprint(), presig.getSigner(), signature);
}
/**
* Converts from a RFC 2536 formatted DSA signature to a JCE (ASN.1)
* formatted signature.
*
* <p>
* ASN.1 format = ASN1_SEQ . seq_length . ASN1_INT . Rlength . R . ANS1_INT
* . Slength . S
* </p>
*
* The integers R and S may have a leading null byte to force the integer
* positive.
*
* @param signature
* the RFC 2536 formatted DSA signature.
* @return The ASN.1 formatted DSA signature.
* @throws SignatureException
* if there was something wrong with the RFC 2536 formatted
* signature.
*/
public static byte [] convertDSASignature(byte [] signature)
throws SignatureException {
if (signature.length != 41) {
throw new SignatureException(
"RFC 2536 signature not expected length.");
}
byte r_pad = 0;
byte s_pad = 0;
// handle initial null byte padding.
if (signature[1] < 0) {
r_pad++;
}
if (signature[21] < 0) {
s_pad++;
}
// ASN.1 length = R length + S length + (2 + 2 + 2), where each 2
// is for a ASN.1 type-length byte pair of which there are three
// (SEQ, INT, INT).
byte sig_length = (byte) (40 + r_pad + s_pad + 6);
byte [] sig = new byte[sig_length];
byte pos = 0;
sig[pos++] = ASN1_SEQ;
sig[pos++] = (byte) (sig_length - 2); // all but the SEQ type+length.
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + r_pad);
// copy the value of R, leaving a null byte if necessary
if (r_pad == 1) {
sig[pos++] = 0;
}
System.arraycopy(signature, 1, sig, pos, 20);
pos += 20;
sig[pos++] = ASN1_INT;
sig[pos++] = (byte) (20 + s_pad);
// copy the value of S, leaving a null byte if necessary
if (s_pad == 1) {
sig[pos++] = 0;
}
System.arraycopy(signature, 21, sig, pos, 20);
return sig;
}
/**
* Converts from a JCE (ASN.1) formatted DSA signature to a RFC 2536
* compliant signature.
*
* <p>
* rfc2536 format = T . R . S
* </p>
*
* where T is a number between 0 and 8, which is based on the DSA key
* length, and R & S are formatted to be exactly 20 bytes each (no leading
* null bytes).
*
* @param params
* the DSA parameters associated with the DSA key used to
* generate the signature.
* @param signature
* the ASN.1 formatted DSA signature.
* @return a RFC 2536 formatted DSA signature.
* @throws SignatureException
* if something is wrong with the ASN.1 format.
*/
public static byte [] convertDSASignature(DSAParams params,
byte [] signature) throws SignatureException {
if ((signature[0] != ASN1_SEQ) || (signature[2] != ASN1_INT)) {
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT");
}
byte r_pad = (byte) (signature[3] - 20);
if (signature[24 + r_pad] != ASN1_INT) {
throw new SignatureException(
"Invalid ASN.1 signature format: expected SEQ, INT, INT");
}
log.trace("(start) ASN.1 DSA Sig:\n" + base64.toString(signature));
byte s_pad = (byte) (signature[25 + r_pad] - 20);
byte [] sig = new byte[41]; // all rfc2536 signatures are 41 bytes.
// Calculate T:
sig[0] = (byte) ((params.getP().bitLength() - 512) / 64);
// copy R value
if (r_pad >= 0) {
System.arraycopy(signature, 4 + r_pad, sig, 1, 20);
} else {
// R is shorter than 20 bytes, so right justify the number
// (r_pad is negative here, remember?).
Arrays.fill(sig, 1, 1 - r_pad, (byte) 0);
System.arraycopy(signature, 4, sig, 1 - r_pad, 20 + r_pad);
}
// copy S value
if (s_pad >= 0) {
System.arraycopy(signature, 26 + r_pad + s_pad, sig, 21, 20);
} else {
// S is shorter than 20 bytes, so right justify the number
// (s_pad is negative here).
Arrays.fill(sig, 21, 21 - s_pad, (byte) 0);
System.arraycopy(signature, 26 + r_pad, sig, 21 - s_pad, 20 +
s_pad);
}
if ((r_pad < 0) || (s_pad < 0)) {
log.trace("(finish ***) RFC 2536 DSA Sig:\n" +
base64.toString(sig));
} else {
log.trace("(finish) RFC 2536 DSA Sig:\n" + base64.toString(sig));
}
return sig;
}
/**
* This class implements a basic comparator for byte arrays. It is primarily
* useful for comparing RDATA portions of DNS records in doing DNSSEC
* canonical ordering.
*/
public static class ByteArrayComparator implements Comparator<byte []> {
private int mOffset = 0;
private boolean mDebug = false;
public ByteArrayComparator() {}
public ByteArrayComparator(int offset, boolean debug) {
mOffset = offset;
mDebug = debug;
}
public int compare(byte [] b1, byte [] b2) throws ClassCastException {
for (int i = mOffset; (i < b1.length) && (i < b2.length); i++) {
if (b1[i] != b2[i]) {
if (mDebug) {
System.out.println("offset " + i +
" differs (this is " + (i - mOffset) +
" bytes in from our offset.)");
}
return (b1[i] & 0xFF) - (b2[i] & 0xFF);
}
}
return b1.length - b2.length;
}
}
}

View File

@@ -0,0 +1,102 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
import org.xbill.DNS.*;
import java.util.*;
/**
*
*/
public class TrustAnchorStore {
private Map<String, SRRset> mMap;
public TrustAnchorStore() {
mMap = null;
}
private String key(Name n, int dclass) {
return "T" + dclass + "/" + Util.nameToString(n);
}
public void store(SRRset rrset) {
if (mMap == null) {
mMap = new HashMap<String, SRRset>();
}
String k = key(rrset.getName(), rrset.getDClass());
rrset.setSecurityStatus(SecurityStatus.SECURE);
mMap.put(k, rrset);
}
private SRRset lookup(String key) {
if (mMap == null) {
return null;
}
return mMap.get(key);
}
public SRRset find(Name n, int dclass) {
if (mMap == null) {
return null;
}
while (n.labels() > 0) {
String k = key(n, dclass);
SRRset r = lookup(k);
if (r != null) {
return r;
}
n = new Name(n, 1);
}
return null;
}
public boolean isBelowTrustAnchor(Name n, int dclass) {
return find(n, dclass) != null;
}
public List<String> listTrustAnchors() {
List<String> res = new ArrayList<String>();
for (Map.Entry<String, SRRset> entry : mMap.entrySet()) {
for (Iterator<Record> i = entry.getValue().rrs(); i.hasNext();) {
DNSKEYRecord r = (DNSKEYRecord) i.next();
String key_desc = r.getName().toString() + "/" +
DNSSEC.Algorithm.string(r.getAlgorithm()) + "/" +
r.getFootprint();
res.add(key_desc);
}
}
return res;
}
}

View File

@@ -0,0 +1,109 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
import org.xbill.DNS.Name;
import java.util.*;
/**
* Some basic utility functions.
*/
public class Util {
/**
* Convert a DNS name into a string suitable for use as a cache key.
*
* @param name The name to convert.
* @return A string representing the name. This isn't ever meant to be
* converted back into a DNS name.
*/
public static String nameToString(Name name) {
if (name.equals(Name.root)) {
return ".";
}
String n = name.toString().toLowerCase();
if (n.endsWith(".")) {
n = n.substring(0, n.length() - 1);
}
return n;
}
public static int parseInt(String s, int def) {
if (s == null) {
return def;
}
try {
return Integer.parseInt(s);
} catch (NumberFormatException e) {
return def;
}
}
public static long parseLong(String s, long def) {
if (s == null) {
return def;
}
try {
return Long.parseLong(s);
} catch (NumberFormatException e) {
return def;
}
}
public static List<ConfigEntry> parseConfigPrefix(Properties config,
String prefix) {
if (!prefix.endsWith(".")) {
prefix = prefix + ".";
}
List<ConfigEntry> res = new ArrayList<ConfigEntry>();
for (Map.Entry<Object, Object> entry : config.entrySet()) {
String key = (String) entry.getKey();
if (key.startsWith(prefix)) {
key = key.substring(prefix.length());
res.add(new ConfigEntry(key, (String) entry.getValue()));
}
}
return res;
}
public static class ConfigEntry {
public String key;
public String value;
public ConfigEntry(String key, String value) {
this.key = key;
this.value = value;
}
}
}

View File

@@ -0,0 +1,653 @@
/***************************** -*- Java -*- ********************************\
* *
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
* *
* This software is provided solely in connection with the terms of the *
* license agreement. Any other use without the prior express written *
* permission of VeriSign is completely prohibited. The software and *
* documentation are "Commercial Items", as that term is defined in 48 *
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
* "Commercial Computer Software Documentation" as such terms are defined *
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
* section 227.7202, as applicable. Pursuant to the above and other *
* relevant sections of the Code of Federal Regulations, as applicable, *
* VeriSign's publications, commercial computer software, and commercial *
* computer software documentation are distributed and licensed to United *
* States Government end users with only those rights as granted to all *
* other end users, according to the terms and conditions contained in the *
* license agreement(s) that accompany the products and software *
* documentation. *
* *
\***************************************************************************/
package com.verisign.tat.dnssec;
import org.apache.log4j.Logger;
import org.xbill.DNS.*;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Iterator;
/**
* This is a collection of routines encompassing the logic of validating
* different message types.
*/
public class ValUtils {
private static Logger st_log = Logger.getLogger(ValUtils.class);
private Logger log = Logger.getLogger(this.getClass());
/** A local copy of the verifier object. */
private DnsSecVerifier mVerifier;
public ValUtils(DnsSecVerifier verifier) {
mVerifier = verifier;
}
/**
* Given a response, classify ANSWER responses into a subtype.
*
* @param m
* The response to classify.
*
* @return A subtype ranging from UNKNOWN to NAMEERROR.
*/
public static ResponseType classifyResponse(SMessage m, Name zone) {
SRRset [] rrsets;
// Normal Name Error's are easy to detect -- but don't mistake a CNAME
// chain ending in NXDOMAIN.
if ((m.getRcode() == Rcode.NXDOMAIN) &&
(m.getCount(Section.ANSWER) == 0)) {
return ResponseType.NAMEERROR;
}
// If rcode isn't NXDOMAIN or NOERROR, it is a throwaway response.
if (m.getRcode() != Rcode.NOERROR) {
return ResponseType.THROWAWAY;
}
// Next is REFERRAL. These are distinguished by having:
// 1) nothing in the ANSWER section
// 2) an NS RRset in the AUTHORITY section that is a strict subdomain of
// 'zone' (the presumed queried zone).
if ((zone != null) && (m.getCount(Section.ANSWER) == 0) &&
(m.getCount(Section.AUTHORITY) > 0)) {
rrsets = m.getSectionRRsets(Section.AUTHORITY);
for (int i = 0; i < rrsets.length; ++i) {
if ((rrsets[i].getType() == Type.NS) &&
strictSubdomain(rrsets[i].getName(), zone)) {
return ResponseType.REFERRAL;
}
}
}
// Next is NODATA
if (m.getCount(Section.ANSWER) == 0) {
return ResponseType.NODATA;
}
// We distinguish between CNAME response and other positive/negative
// responses because CNAME answers require extra processing.
int qtype = m.getQuestion().getType();
// We distinguish between ANY and CNAME or POSITIVE because ANY
// responses are validated differently.
if (qtype == Type.ANY) {
return ResponseType.ANY;
}
rrsets = m.getSectionRRsets(Section.ANSWER);
// Note that DNAMEs will be ignored here, unless qtype=DNAME. Unless
// qtype=CNAME, this will yield a CNAME response.
for (int i = 0; i < rrsets.length; i++) {
if (rrsets[i].getType() == qtype) {
return ResponseType.POSITIVE;
}
if (rrsets[i].getType() == Type.CNAME) {
return ResponseType.CNAME;
}
}
st_log.warn("Failed to classify response message:\n" + m);
return ResponseType.UNKNOWN;
}
/**
* Given a response, determine the name of the "signer". This is primarily
* to determine if the response is, in fact, signed at all, and, if so, what
* is the name of the most pertinent keyset.
*
* @param m
* The response to analyze.
* @return a signer name, if the response is signed (even partially), or
* null if the response isn't signed.
*/
public Name findSigner(SMessage m) {
// FIXME: this used to classify the message, then look in the pertinent
// section. Now we just find the first RRSIG in the ANSWER and AUTHORIY
// sections.
for (int section = Section.ANSWER; section < Section.ADDITIONAL;
++section) {
SRRset [] rrsets = m.getSectionRRsets(section);
for (int i = 0; i < rrsets.length; ++i) {
Name signerName = rrsets[i].getSignerName();
if (signerName != null) {
return signerName;
}
}
}
return null;
}
/**
* Given a DNSKEY record, generate the DS record from it.
*
* @param keyrec
* the DNSKEY record in question.
* @param ds_alg
* The DS digest algorithm in use.
* @return the corresponding {@link org.xbill.DNS.DSRecord}
*/
public static byte [] calculateDSHash(DNSKEYRecord keyrec, int ds_alg) {
DNSOutput os = new DNSOutput();
os.writeByteArray(keyrec.getName().toWireCanonical());
os.writeByteArray(keyrec.rdataToWireCanonical());
try {
MessageDigest md = null;
switch (ds_alg) {
case DSRecord.SHA1_DIGEST_ID:
md = MessageDigest.getInstance("SHA");
return md.digest(os.toByteArray());
case DSRecord.SHA256_DIGEST_ID:
md = MessageDigest.getInstance("SHA256");
return md.digest(os.toByteArray());
default:
st_log.warn("Unknown DS algorithm: " + ds_alg);
return null;
}
} catch (NoSuchAlgorithmException e) {
st_log.error("Error using DS algorithm: " + ds_alg, e);
return null;
}
}
public static boolean supportsDigestID(int digest_id) {
if (digest_id == DSRecord.SHA1_DIGEST_ID) {
return true;
}
if (digest_id == DSRecord.SHA256_DIGEST_ID) {
return true;
}
return false;
}
/**
* Check to see if a type is a special DNSSEC type.
*
* @param type
* The type.
*
* @return true if the type is one of the special DNSSEC types.
*/
public static boolean isDNSSECType(int type) {
switch (type) {
case Type.DNSKEY:
case Type.NSEC:
case Type.DS:
case Type.RRSIG:
case Type.NSEC3:
return true;
default:
return false;
}
}
/**
* Set the security status of a particular RRset. This will only upgrade the
* security status.
*
* @param rrset
* The SRRset to update.
* @param security
* The security status.
*/
public static void setRRsetSecurity(SRRset rrset, byte security) {
if (rrset == null) {
return;
}
int cur_sec = rrset.getSecurityStatus();
if ((cur_sec == SecurityStatus.UNCHECKED) || (security > cur_sec)) {
rrset.setSecurityStatus(security);
}
}
/**
* Set the security status of a message and all of its RRsets. This will
* only upgrade the status of the message (i.e., set to more secure, not
* less) and all of the RRsets.
*
* @param m
* @param security
* KeyEntry ke;
*
* SMessage m = response.getSMessage(); SRRset ans_rrset =
* m.findAnswerRRset(qname, qtype, qclass);
*
* ke = verifySRRset(ans_rrset, key_rrset); if
* (ans_rrset.getSecurityStatus() != SecurityStatus.SECURE) {
* return; } key_rrset = ke.getRRset();
*/
public static void setMessageSecurity(SMessage m, byte security) {
if (m == null) {
return;
}
int cur_sec = m.getStatus();
if ((cur_sec == SecurityStatus.UNCHECKED) || (security > cur_sec)) {
m.setStatus(security);
}
for (int section = Section.ANSWER; section <= Section.ADDITIONAL;
section++) {
SRRset [] rrsets = m.getSectionRRsets(section);
for (int i = 0; i < rrsets.length; i++) {
setRRsetSecurity(rrsets[i], security);
}
}
}
/**
* Given an SRRset that is signed by a DNSKEY found in the key_rrset, verify
* it. This will return the status (either BOGUS or SECURE) and set that
* status in rrset.
*
* @param rrset
* The SRRset to verify.
* @param key_rrset
* The set of keys to verify against.
* @return The status (BOGUS or SECURE).
*/
public byte verifySRRset(SRRset rrset, SRRset key_rrset) {
String rrset_name = rrset.getName() + "/" +
Type.string(rrset.getType()) + "/" +
DClass.string(rrset.getDClass());
if (rrset.getSecurityStatus() == SecurityStatus.SECURE) {
log.trace("verifySRRset: rrset <" + rrset_name +
"> previously found to be SECURE");
return SecurityStatus.SECURE;
}
byte status = mVerifier.verify(rrset, key_rrset);
if (status != SecurityStatus.SECURE) {
log.debug("verifySRRset: rrset <" + rrset_name +
"> found to be BAD");
status = SecurityStatus.BOGUS;
} else {
log.trace("verifySRRset: rrset <" + rrset_name +
"> found to be SECURE");
}
rrset.setSecurityStatus(status);
return status;
}
/**
* Determine if a given type map has a given type.
*
* @param types
* The type map from the NSEC record.
* @param type
* The type to look for.
* @return true if the type is present in the type map, false otherwise.
*/
public static boolean typeMapHasType(int [] types, int type) {
for (int i = 0; i < types.length; i++) {
if (types[i] == type) {
return true;
}
}
return false;
}
@SuppressWarnings("unchecked")
public static RRSIGRecord rrsetFirstSig(RRset rrset) {
for (Iterator i = rrset.sigs(); i.hasNext();) {
return (RRSIGRecord) i.next();
}
return null;
}
/**
* Finds the longest common name between two domain names.
*
* @param domain1
* @param domain2
* @return
*/
public static Name longestCommonName(Name domain1, Name domain2) {
if ((domain1 == null) || (domain2 == null)) {
return null;
}
// for now, do this in a a fairly brute force way
// FIXME: convert this to direct operations on the byte[]
int d1_labels = domain1.labels();
int d2_labels = domain2.labels();
int l = (d1_labels < d2_labels) ? d1_labels : d2_labels;
for (int i = l; i > 0; i--) {
Name n1 = new Name(domain1, d1_labels - i);
Name n2 = new Name(domain2, d2_labels - i);
if (n1.equals(n2)) {
return n1;
}
}
return Name.root;
}
public static boolean strictSubdomain(Name child, Name parent) {
int clabels = child.labels();
int plabels = parent.labels();
if (plabels >= clabels) {
return false;
}
Name n = new Name(child, clabels - plabels);
return parent.equals(n);
}
/**
* Determine by looking at a signed RRset whether or not the rrset name was
* the result of a wildcard expansion.
*
* @param rrset
* The rrset to examine.
* @return true if the rrset is a wildcard expansion. This will return false
* for all unsigned rrsets.
*/
public static boolean rrsetIsWildcardExpansion(RRset rrset) {
if (rrset == null) {
return false;
}
RRSIGRecord rrsig = rrsetFirstSig(rrset);
if ((rrset.getName().labels() - 1) > rrsig.getLabels()) {
return true;
}
return false;
}
/**
* Determine by looking at a signed RRset whether or not the RRset name was
* the result of a wildcard expansion. If so, return the name of the
* generating wildcard.
*
* @param rrset
* The rrset to check.
* @return the wildcard name, if the rrset was synthesized from a wildcard.
* null if not.
*/
public static Name rrsetWildcard(RRset rrset) {
if (rrset == null) {
return null;
}
RRSIGRecord rrsig = rrsetFirstSig(rrset);
// if the RRSIG label count is shorter than the number of actual labels,
// then this rrset was synthesized from a wildcard.
// Note that the RRSIG label count doesn't count the root label.
int label_diff = (rrset.getName().labels() - 1) - rrsig.getLabels();
if (label_diff > 0) {
return rrset.getName().wild(label_diff);
}
return null;
}
public static Name closestEncloser(Name domain, NSECRecord nsec) {
Name n1 = longestCommonName(domain, nsec.getName());
Name n2 = longestCommonName(domain, nsec.getNext());
return (n1.labels() > n2.labels()) ? n1 : n2;
}
public static Name nsecWildcard(Name domain, NSECRecord nsec) {
try {
return new Name("*", closestEncloser(domain, nsec));
} catch (TextParseException e) {
// this should never happen.
return null;
}
}
/**
* Determine if the given NSEC proves a NameError (NXDOMAIN) for a given
* qname.
*
* @param nsec
* The NSEC to check.
* @param qname
* The qname to check against.
* @param signerName
* The signer name of the NSEC record, which is used as the zone
* name, for a more precise (but perhaps more brittle) check for
* the last NSEC in a zone.
* @return true if the NSEC proves the condition.
*/
public static boolean nsecProvesNameError(NSECRecord nsec, Name qname,
Name signerName) {
Name owner = nsec.getName();
Name next = nsec.getNext();
// If NSEC owner == qname, then this NSEC proves that qname exists.
if (qname.equals(owner)) {
return false;
}
// If NSEC is a parent of qname, we need to check the type map
// If the parent name has a DNAME or is a delegation point, then this
// NSEC is being misused.
boolean hasBadType = typeMapHasType(nsec.getTypes(), Type.DNAME) ||
(typeMapHasType(nsec.getTypes(), Type.NS) &&
!typeMapHasType(nsec.getTypes(), Type.SOA));
if (qname.subdomain(owner) && hasBadType) {
return false;
}
if (((qname.compareTo(owner) > 0) && (qname.compareTo(next) < 0)) ||
signerName.equals(next)) {
return true;
}
return false;
}
/**
* Determine if a NSEC record proves the non-existence of a wildcard that
* could have produced qname.
*
* @param nsec
* The nsec to check.
* @param qname
* The qname to check against.
* @param signerName
* The signer name for the NSEC rrset, used as the zone name.
* @return true if the NSEC proves the condition.
*/
public static boolean nsecProvesNoWC(NSECRecord nsec, Name qname,
Name signerName) {
Name owner = nsec.getName();
Name next = nsec.getNext();
int qname_labels = qname.labels();
int signer_labels = signerName.labels();
for (int i = qname_labels - signer_labels; i > 0; i--) {
Name wc_name = qname.wild(i);
if ((wc_name.compareTo(owner) > 0) &&
((wc_name.compareTo(next) < 0) || signerName.equals(next))) {
return true;
}
}
return false;
}
/**
* Determine if a NSEC proves the NOERROR/NODATA conditions. This will also
* handle the empty non-terminal (ENT) case and partially handle the
* wildcard case. If the ownername of 'nsec' is a wildcard, the validator
* must still be provided proof that qname did not directly exist and that
* the wildcard is, in fact, *.closest_encloser.
*
* @param nsec
* The NSEC to check
* @param qname
* The query name to check against.
* @param qtype
* The query type to check against.
* @return true if the NSEC proves the condition.
*/
public static boolean nsecProvesNodata(NSECRecord nsec, Name qname,
int qtype) {
if (!nsec.getName().equals(qname)) {
// wildcard checking.
// If this is a wildcard NSEC, make sure that a) it was possible to
// have
// generated qname from the wildcard and b) the type map does not
// contain qtype. Note that this does NOT prove that this wildcard
// was
// the applicable wildcard.
if (nsec.getName().isWild()) {
// the is the purported closest encloser.
Name ce = new Name(nsec.getName(), 1);
// The qname must be a strict subdomain of the closest encloser,
// and
// the qtype must be absent from the type map.
if (!strictSubdomain(qname, ce) ||
typeMapHasType(nsec.getTypes(), qtype)) {
return false;
}
return true;
}
// empty-non-terminal checking.
// If the nsec is proving that qname is an ENT, the nsec owner will
// be
// less than qname, and the next name will be a child domain of the
// qname.
if (strictSubdomain(nsec.getNext(), qname) &&
(qname.compareTo(nsec.getName()) > 0)) {
return true;
}
// Otherwise, this NSEC does not prove ENT, so it does not prove
// NODATA.
return false;
}
// If the qtype exists, then we should have gotten it.
if (typeMapHasType(nsec.getTypes(), qtype)) {
return false;
}
// if the name is a CNAME node, then we should have gotten the CNAME
if (typeMapHasType(nsec.getTypes(), Type.CNAME)) {
return false;
}
// If an NS set exists at this name, and NOT a SOA (so this is a zone
// cut,
// not a zone apex), then we should have gotten a referral (or we just
// got
// the wrong NSEC).
if (typeMapHasType(nsec.getTypes(), Type.NS) &&
!typeMapHasType(nsec.getTypes(), Type.SOA)) {
return false;
}
return true;
}
public static byte nsecProvesNoDS(NSECRecord nsec, Name qname) {
// Could check to make sure the qname is a subdomain of nsec
int [] types = nsec.getTypes();
if (typeMapHasType(types, Type.SOA) || typeMapHasType(types, Type.DS)) {
// SOA present means that this is the NSEC from the child, not the
// parent (so it is the wrong one)
// DS present means that there should have been a positive response
// to
// the DS query, so there is something wrong.
return SecurityStatus.BOGUS;
}
if (!typeMapHasType(types, Type.NS)) {
// If there is no NS at this point at all, then this doesn't prove
// anything one way or the other.
return SecurityStatus.INSECURE;
}
// Otherwise, this proves no DS.
return SecurityStatus.SECURE;
}
// These are response subtypes. They are necessary for determining the
// validation strategy. They have no bearing on the iterative resolution
// algorithm, so they are confined here.
public enum ResponseType {UNTYPED, UNKNOWN, POSITIVE, CNAME, NODATA,
NAMEERROR, ANY, REFERRAL,
// a referral response
THROWAWAY;
// a throwaway response (i.e., an error)
}
}