fix source directory name typo
This commit is contained in:
1010
src/com/verisign/tat/dnssec/CaptiveValidator.java
Normal file
1010
src/com/verisign/tat/dnssec/CaptiveValidator.java
Normal file
File diff suppressed because it is too large
Load Diff
522
src/com/verisign/tat/dnssec/DnsSecVerifier.java
Normal file
522
src/com/verisign/tat/dnssec/DnsSecVerifier.java
Normal file
@@ -0,0 +1,522 @@
|
||||
/***************************** -*- Java -*- ********************************\
|
||||
* *
|
||||
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
|
||||
* *
|
||||
* This software is provided solely in connection with the terms of the *
|
||||
* license agreement. Any other use without the prior express written *
|
||||
* permission of VeriSign is completely prohibited. The software and *
|
||||
* documentation are "Commercial Items", as that term is defined in 48 *
|
||||
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
|
||||
* "Commercial Computer Software Documentation" as such terms are defined *
|
||||
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
|
||||
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
|
||||
* section 227.7202, as applicable. Pursuant to the above and other *
|
||||
* relevant sections of the Code of Federal Regulations, as applicable, *
|
||||
* VeriSign's publications, commercial computer software, and commercial *
|
||||
* computer software documentation are distributed and licensed to United *
|
||||
* States Government end users with only those rights as granted to all *
|
||||
* other end users, according to the terms and conditions contained in the *
|
||||
* license agreement(s) that accompany the products and software *
|
||||
* documentation. *
|
||||
* *
|
||||
\***************************************************************************/
|
||||
|
||||
package com.verisign.tat.dnssec;
|
||||
|
||||
import org.apache.log4j.Logger;
|
||||
|
||||
import org.xbill.DNS.*;
|
||||
import org.xbill.DNS.security.*;
|
||||
|
||||
import java.io.*;
|
||||
|
||||
import java.security.*;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
|
||||
/**
|
||||
* A class for performing basic DNSSEC verification. The DNSJAVA package
|
||||
* contains a similar class. This is a re-implementation that allows us to have
|
||||
* finer control over the validation process.
|
||||
*/
|
||||
public class DnsSecVerifier {
|
||||
public static final int UNKNOWN = 0;
|
||||
public static final int RSA = 1;
|
||||
public static final int DSA = 2;
|
||||
private Logger log = Logger.getLogger(this.getClass());
|
||||
|
||||
/**
|
||||
* This is a mapping of DNSSEC algorithm numbers/private identifiers to JCA
|
||||
* algorithm identifiers.
|
||||
*/
|
||||
private HashMap<Integer, AlgEntry> mAlgorithmMap;
|
||||
|
||||
public DnsSecVerifier() {
|
||||
mAlgorithmMap = new HashMap<Integer, AlgEntry>();
|
||||
|
||||
// set the default algorithm map.
|
||||
mAlgorithmMap.put(new Integer(DNSSEC.RSAMD5),
|
||||
new AlgEntry("MD5withRSA", DNSSEC.RSAMD5, false));
|
||||
mAlgorithmMap.put(new Integer(DNSSEC.DSA),
|
||||
new AlgEntry("SHA1withDSA", DNSSEC.DSA, true));
|
||||
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA1),
|
||||
new AlgEntry("SHA1withRSA", DNSSEC.RSASHA1, false));
|
||||
mAlgorithmMap.put(new Integer(DNSSEC.DSA_NSEC3_SHA1),
|
||||
new AlgEntry("SHA1withDSA", DNSSEC.DSA, true));
|
||||
mAlgorithmMap.put(new Integer(DNSSEC.RSA_NSEC3_SHA1),
|
||||
new AlgEntry("SHA1withRSA", DNSSEC.RSASHA1, false));
|
||||
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA256),
|
||||
new AlgEntry("SHA256withRSA", DNSSEC.RSASHA256, false));
|
||||
mAlgorithmMap.put(new Integer(DNSSEC.RSASHA512),
|
||||
new AlgEntry("SHA512withRSA", DNSSEC.RSASHA512, false));
|
||||
}
|
||||
|
||||
private boolean isDSA(int algorithm) {
|
||||
// shortcut the standard algorithms
|
||||
if (algorithm == DNSSEC.DSA) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (algorithm == DNSSEC.RSASHA1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (algorithm == DNSSEC.RSAMD5) {
|
||||
return false;
|
||||
}
|
||||
|
||||
AlgEntry entry = (AlgEntry) mAlgorithmMap.get(new Integer(algorithm));
|
||||
|
||||
if (entry != null) {
|
||||
return entry.isDSA;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
public void init(Properties config) {
|
||||
if (config == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Algorithm configuration
|
||||
|
||||
// For now, we just accept new identifiers for existing algorithms.
|
||||
// FIXME: handle private identifiers.
|
||||
List<Util.ConfigEntry> aliases = Util.parseConfigPrefix(config,
|
||||
"dns.algorithm.");
|
||||
|
||||
for (Util.ConfigEntry entry : aliases) {
|
||||
Integer alg_alias = new Integer(Util.parseInt(entry.key, -1));
|
||||
Integer alg_orig = new Integer(Util.parseInt(entry.value, -1));
|
||||
|
||||
if (!mAlgorithmMap.containsKey(alg_orig)) {
|
||||
log.warn("Unable to alias " + alg_alias +
|
||||
" to unknown algorithm " + alg_orig);
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
if (mAlgorithmMap.containsKey(alg_alias)) {
|
||||
log.warn("Algorithm alias " + alg_alias +
|
||||
" is already defined and cannot be redefined");
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
mAlgorithmMap.put(alg_alias, mAlgorithmMap.get(alg_orig));
|
||||
}
|
||||
|
||||
// for debugging purposes, log the entire algorithm map table.
|
||||
for (Integer alg : mAlgorithmMap.keySet()) {
|
||||
AlgEntry entry = mAlgorithmMap.get(alg);
|
||||
|
||||
if (entry == null) {
|
||||
log.warn("DNSSEC alg " + alg + " has a null entry!");
|
||||
} else {
|
||||
log.debug("DNSSEC alg " + alg + " maps to " + entry.jcaName +
|
||||
" (" + entry.dnssecAlg + ")");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the matching DNSKEY(s) to an RRSIG within a DNSKEY rrset. Normally
|
||||
* this will only return one DNSKEY. It can return more than one, since
|
||||
* KeyID/Footprints are not guaranteed to be unique.
|
||||
*
|
||||
* @param dnskey_rrset
|
||||
* The DNSKEY rrset to search.
|
||||
* @param signature
|
||||
* The RRSIG to match against.
|
||||
* @return A List contains a one or more DNSKEYRecord objects, or null if a
|
||||
* matching DNSKEY could not be found.
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
private List<DNSKEYRecord> findKey(RRset dnskey_rrset, RRSIGRecord signature) {
|
||||
if (!signature.getSigner().equals(dnskey_rrset.getName())) {
|
||||
log.trace("findKey: could not find appropriate key because " +
|
||||
"incorrect keyset was supplied. Wanted: " +
|
||||
signature.getSigner() + ", got: " + dnskey_rrset.getName());
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
int keyid = signature.getFootprint();
|
||||
int alg = signature.getAlgorithm();
|
||||
|
||||
List<DNSKEYRecord> res = new ArrayList<DNSKEYRecord>(dnskey_rrset.size());
|
||||
|
||||
for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) {
|
||||
DNSKEYRecord r = (DNSKEYRecord) i.next();
|
||||
|
||||
if ((r.getAlgorithm() == alg) && (r.getFootprint() == keyid)) {
|
||||
res.add(r);
|
||||
}
|
||||
}
|
||||
|
||||
if (res.size() == 0) {
|
||||
log.trace("findKey: could not find a key matching " +
|
||||
"the algorithm and footprint in supplied keyset. ");
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check to see if a signature looks valid (i.e., matches the rrset in
|
||||
* question, in the validity period, etc.)
|
||||
*
|
||||
* @param rrset
|
||||
* The rrset that the signature belongs to.
|
||||
* @param sigrec
|
||||
* The signature record to check.
|
||||
* @return A value of DNSSEC.Secure if it looks OK, DNSSEC.Faile if it looks
|
||||
* bad.
|
||||
*/
|
||||
private byte checkSignature(RRset rrset, RRSIGRecord sigrec) {
|
||||
if ((rrset == null) || (sigrec == null)) {
|
||||
return DNSSEC.Failed;
|
||||
}
|
||||
|
||||
if (!rrset.getName().equals(sigrec.getName())) {
|
||||
log.debug("Signature name does not match RRset name");
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
if (rrset.getType() != sigrec.getTypeCovered()) {
|
||||
log.debug("Signature type does not match RRset type");
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
Date now = new Date();
|
||||
Date start = sigrec.getTimeSigned();
|
||||
Date expire = sigrec.getExpire();
|
||||
|
||||
if (now.before(start)) {
|
||||
log.debug("Signature is not yet valid");
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
if (now.after(expire)) {
|
||||
log.debug("Signature has expired (now = " + now +
|
||||
", sig expires = " + expire);
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
return SecurityStatus.SECURE;
|
||||
}
|
||||
|
||||
public PublicKey parseDNSKEY(DNSKEYRecord key) {
|
||||
AlgEntry ae = (AlgEntry) mAlgorithmMap.get(new Integer(
|
||||
key.getAlgorithm()));
|
||||
|
||||
if (key.getAlgorithm() != ae.dnssecAlg) {
|
||||
// Recast the DNSKEYRecord in question as one using the offical
|
||||
// algorithm, to work around the lack of alias support in the
|
||||
// underlying
|
||||
// KEYConverter class from DNSjava
|
||||
key = new DNSKEYRecord(key.getName(), key.getDClass(),
|
||||
key.getTTL(), key.getFlags(), key.getProtocol(),
|
||||
ae.dnssecAlg, key.getKey());
|
||||
}
|
||||
|
||||
return KEYConverter.parseRecord(key);
|
||||
}
|
||||
|
||||
/**
|
||||
* Actually cryptographically verify a signature over the rrset. The RRSIG
|
||||
* record must match the rrset being verified (see checkSignature).
|
||||
*
|
||||
* @param rrset
|
||||
* The rrset to verify.
|
||||
* @param sigrec
|
||||
* The signature to verify with.
|
||||
* @param key
|
||||
* The (public) key associated with the RRSIG record.
|
||||
* @return A security status code: SECURE if it worked, BOGUS if not,
|
||||
* UNCHECKED if we just couldn't actually do the function.
|
||||
*/
|
||||
public byte verifySignature(RRset rrset, RRSIGRecord sigrec,
|
||||
DNSKEYRecord key) {
|
||||
try {
|
||||
PublicKey pk = parseDNSKEY(key);
|
||||
|
||||
if (pk == null) {
|
||||
log.warn(
|
||||
"Could not convert DNSKEY record to a JCA public key: " +
|
||||
key);
|
||||
|
||||
return SecurityStatus.UNCHECKED;
|
||||
}
|
||||
|
||||
byte [] data = SignUtils.generateSigData(rrset, sigrec);
|
||||
|
||||
Signature signer = getSignature(sigrec.getAlgorithm());
|
||||
|
||||
if (signer == null) {
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
signer.initVerify(pk);
|
||||
signer.update(data);
|
||||
|
||||
byte [] sig = sigrec.getSignature();
|
||||
|
||||
if (isDSA(sigrec.getAlgorithm())) {
|
||||
sig = SignUtils.convertDSASignature(sig);
|
||||
}
|
||||
|
||||
if (!signer.verify(sig)) {
|
||||
log.info("Signature failed to verify cryptographically");
|
||||
log.debug("Failed signature: " + sigrec);
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
log.trace("Signature verified: " + sigrec);
|
||||
|
||||
return SecurityStatus.SECURE;
|
||||
} catch (IOException e) {
|
||||
log.error("I/O error", e);
|
||||
} catch (GeneralSecurityException e) {
|
||||
log.error("Security error", e);
|
||||
}
|
||||
|
||||
// FIXME: Since I'm not sure what would cause an exception here (failure
|
||||
// to have the required crypto?)
|
||||
// We default to UNCHECKED instead of BOGUS. This could be wrong.
|
||||
return SecurityStatus.UNCHECKED;
|
||||
}
|
||||
|
||||
/**
|
||||
* Verify an RRset against a particular signature.
|
||||
*
|
||||
* @return DNSSEC.Secure if the signature verfied, DNSSEC.Failed if it did
|
||||
* not verify (for any reason), and DNSSEC.Insecure if verification
|
||||
* could not be completed (usually because the public key was not
|
||||
* available).
|
||||
*/
|
||||
public byte verifySignature(RRset rrset, RRSIGRecord sigrec, RRset key_rrset) {
|
||||
byte result = checkSignature(rrset, sigrec);
|
||||
|
||||
if (result != SecurityStatus.SECURE) {
|
||||
return result;
|
||||
}
|
||||
|
||||
List<DNSKEYRecord> keys = findKey(key_rrset, sigrec);
|
||||
|
||||
if (keys == null) {
|
||||
log.trace("could not find appropriate key");
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
byte status = SecurityStatus.UNCHECKED;
|
||||
|
||||
for (DNSKEYRecord key : keys) {
|
||||
status = verifySignature(rrset, sigrec, key);
|
||||
|
||||
if (status == SecurityStatus.SECURE) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* Verifies an RRset. This routine does not modify the RRset. This RRset is
|
||||
* presumed to be verifiable, and the correct DNSKEY rrset is presumed to
|
||||
* have been found.
|
||||
*
|
||||
* @return SecurityStatus.SECURE if the rrest verified positively,
|
||||
* SecurityStatus.BOGUS otherwise.
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
public byte verify(RRset rrset, RRset key_rrset) {
|
||||
Iterator i = rrset.sigs();
|
||||
|
||||
if (!i.hasNext()) {
|
||||
log.info("RRset failed to verify due to lack of signatures");
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
while (i.hasNext()) {
|
||||
RRSIGRecord sigrec = (RRSIGRecord) i.next();
|
||||
|
||||
byte res = verifySignature(rrset, sigrec, key_rrset);
|
||||
|
||||
if (res == SecurityStatus.SECURE) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
log.info("RRset failed to verify: all signatures were BOGUS");
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
/**
|
||||
* Verify an RRset against a single DNSKEY. Use this when you must be
|
||||
* certain that an RRset signed and verifies with a particular DNSKEY (as
|
||||
* opposed to a particular DNSKEY rrset).
|
||||
*
|
||||
* @param rrset
|
||||
* The rrset to verify.
|
||||
* @param dnskey
|
||||
* The DNSKEY to verify with.
|
||||
* @return SecurityStatus.SECURE if the rrset verified, BOGUS otherwise.
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
public byte verify(RRset rrset, DNSKEYRecord dnskey) {
|
||||
// Iterate over RRSIGS
|
||||
Iterator i = rrset.sigs();
|
||||
|
||||
if (!i.hasNext()) {
|
||||
log.info("RRset failed to verify due to lack of signatures");
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
while (i.hasNext()) {
|
||||
RRSIGRecord sigrec = (RRSIGRecord) i.next();
|
||||
|
||||
// Skip RRSIGs that do not match our given key's footprint.
|
||||
if (sigrec.getFootprint() != dnskey.getFootprint()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
byte res = verifySignature(rrset, sigrec, dnskey);
|
||||
|
||||
if (res == SecurityStatus.SECURE) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
log.info("RRset failed to verify: all signatures were BOGUS");
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
public boolean supportsAlgorithm(int algorithm) {
|
||||
return mAlgorithmMap.containsKey(new Integer(algorithm));
|
||||
}
|
||||
|
||||
public boolean supportsAlgorithm(Name private_id) {
|
||||
return mAlgorithmMap.containsKey(private_id);
|
||||
}
|
||||
|
||||
public int baseAlgorithm(int algorithm) {
|
||||
switch (algorithm) {
|
||||
case DNSSEC.RSAMD5:
|
||||
case DNSSEC.RSASHA1:
|
||||
return RSA;
|
||||
|
||||
case DNSSEC.DSA:
|
||||
return DSA;
|
||||
}
|
||||
|
||||
AlgEntry entry = (AlgEntry) mAlgorithmMap.get(new Integer(algorithm));
|
||||
|
||||
if (entry == null) {
|
||||
return UNKNOWN;
|
||||
}
|
||||
|
||||
if (entry.isDSA) {
|
||||
return DSA;
|
||||
}
|
||||
|
||||
return RSA;
|
||||
}
|
||||
|
||||
/** @return the appropriate Signature object for this keypair. */
|
||||
private Signature getSignature(int algorithm) {
|
||||
Signature s = null;
|
||||
|
||||
try {
|
||||
AlgEntry entry = (AlgEntry) mAlgorithmMap.get(new Integer(algorithm));
|
||||
|
||||
if (entry == null) {
|
||||
log.info("DNSSEC algorithm " + algorithm + " not recognized.");
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
// TODO: should we cache the instance?
|
||||
s = Signature.getInstance(entry.jcaName);
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
log.error("error getting Signature object", e);
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
private static class AlgEntry {
|
||||
public String jcaName;
|
||||
public boolean isDSA;
|
||||
public int dnssecAlg;
|
||||
|
||||
public AlgEntry(String name, int dnssecAlg, boolean isDSA) {
|
||||
jcaName = name;
|
||||
this.dnssecAlg = dnssecAlg;
|
||||
this.isDSA = isDSA;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: enable private algorithm support in dnsjava.
|
||||
// Right now, this cannot be used because the DNSKEYRecord object doesn't
|
||||
// give us
|
||||
// the private key name.
|
||||
// private Signature getSignature(Name private_alg)
|
||||
// {
|
||||
// Signature s = null;
|
||||
//
|
||||
// try
|
||||
// {
|
||||
// String alg_id = (String) mAlgorithmMap.get(private_alg);
|
||||
// if (alg_id == null)
|
||||
// {
|
||||
// log.debug("DNSSEC private algorithm '" + private_alg
|
||||
// + "' not recognized.");
|
||||
// return null;
|
||||
// }
|
||||
//
|
||||
// s = Signature.getInstance(alg_id);
|
||||
// }
|
||||
// catch (NoSuchAlgorithmException e)
|
||||
// {
|
||||
// log.error("error getting Signature object", e);
|
||||
// }
|
||||
//
|
||||
// return s;
|
||||
// }
|
||||
}
|
||||
901
src/com/verisign/tat/dnssec/NSEC3ValUtils.java
Normal file
901
src/com/verisign/tat/dnssec/NSEC3ValUtils.java
Normal file
@@ -0,0 +1,901 @@
|
||||
/***************************** -*- Java -*- ********************************\
|
||||
* *
|
||||
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
|
||||
* *
|
||||
* This software is provided solely in connection with the terms of the *
|
||||
* license agreement. Any other use without the prior express written *
|
||||
* permission of VeriSign is completely prohibited. The software and *
|
||||
* documentation are "Commercial Items", as that term is defined in 48 *
|
||||
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
|
||||
* "Commercial Computer Software Documentation" as such terms are defined *
|
||||
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
|
||||
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
|
||||
* section 227.7202, as applicable. Pursuant to the above and other *
|
||||
* relevant sections of the Code of Federal Regulations, as applicable, *
|
||||
* VeriSign's publications, commercial computer software, and commercial *
|
||||
* computer software documentation are distributed and licensed to United *
|
||||
* States Government end users with only those rights as granted to all *
|
||||
* other end users, according to the terms and conditions contained in the *
|
||||
* license agreement(s) that accompany the products and software *
|
||||
* documentation. *
|
||||
* *
|
||||
\***************************************************************************/
|
||||
|
||||
package com.verisign.tat.dnssec;
|
||||
|
||||
import com.verisign.tat.dnssec.SignUtils.ByteArrayComparator;
|
||||
|
||||
import org.apache.log4j.Logger;
|
||||
|
||||
import org.xbill.DNS.*;
|
||||
import org.xbill.DNS.utils.base32;
|
||||
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
|
||||
public class NSEC3ValUtils {
|
||||
// FIXME: should probably refactor to handle different NSEC3 parameters more
|
||||
// efficiently.
|
||||
// Given a list of NSEC3 RRs, they should be grouped according to
|
||||
// parameters. The idea is to hash and compare for each group independently,
|
||||
// instead of having to skip NSEC3 RRs with the wrong parameters.
|
||||
private static Name asterisk_label = Name.fromConstantString("*");
|
||||
private static Logger st_log = Logger.getLogger(NSEC3ValUtils.class);
|
||||
private static final base32 b32 = new base32(base32.Alphabet.BASE32HEX,
|
||||
false, false);
|
||||
|
||||
public static boolean supportsHashAlgorithm(int alg) {
|
||||
if (alg == NSEC3Record.SHA1_DIGEST_ID) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
public static void stripUnknownAlgNSEC3s(List<NSEC3Record> nsec3s) {
|
||||
if (nsec3s == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (ListIterator<NSEC3Record> i = nsec3s.listIterator(); i.hasNext();) {
|
||||
NSEC3Record nsec3 = i.next();
|
||||
|
||||
if (!supportsHashAlgorithm(nsec3.getHashAlgorithm())) {
|
||||
i.remove();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static boolean isOptOut(NSEC3Record nsec3) {
|
||||
return (nsec3.getFlags() & NSEC3Record.Flags.OPT_OUT) == NSEC3Record.Flags.OPT_OUT;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a list of NSEC3Records that are part of a message, determine the
|
||||
* NSEC3 parameters (hash algorithm, iterations, and salt) present. If there
|
||||
* is more than one distinct grouping, return null;
|
||||
*
|
||||
* @param nsec3s
|
||||
* A list of NSEC3Record object.
|
||||
* @return A set containing a number of objects (NSEC3Parameter objects)
|
||||
* that correspond to each distinct set of parameters, or null if
|
||||
* the nsec3s list was empty.
|
||||
*/
|
||||
public static NSEC3Parameters nsec3Parameters(List<NSEC3Record> nsec3s) {
|
||||
if ((nsec3s == null) || (nsec3s.size() == 0)) {
|
||||
return null;
|
||||
}
|
||||
|
||||
NSEC3Parameters params = new NSEC3Parameters((NSEC3Record) nsec3s.get(
|
||||
0));
|
||||
ByteArrayComparator bac = new ByteArrayComparator();
|
||||
|
||||
for (NSEC3Record nsec3 : nsec3s) {
|
||||
if (!params.match(nsec3, bac)) {
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
return params;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a hash and an a zone name, construct an NSEC3 ownername.
|
||||
*
|
||||
* @param hash
|
||||
* The hash of an original name.
|
||||
* @param zonename
|
||||
* The zone to use in constructing the NSEC3 name.
|
||||
* @return The NSEC3 name.
|
||||
*/
|
||||
private static Name hashName(byte [] hash, Name zonename) {
|
||||
try {
|
||||
return new Name(b32.toString(hash).toLowerCase(), zonename);
|
||||
} catch (TextParseException e) {
|
||||
// Note, this should never happen.
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a set of NSEC3 parameters, hash a name.
|
||||
*
|
||||
* @param name
|
||||
* The name to hash.
|
||||
* @param params
|
||||
* The parameters to hash with.
|
||||
* @return The hash.
|
||||
*/
|
||||
private static byte [] hash(Name name, NSEC3Parameters params) {
|
||||
try {
|
||||
return params.hash(name);
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
st_log.warn("Did not recognize hash algorithm: " + params.alg);
|
||||
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
private static byte[] hash(Name name, NSEC3Record nsec3) {
|
||||
try {
|
||||
return nsec3.hashName(name);
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
st_log.warn("Did not recognize hash algorithm: " + nsec3.getHashAlgorithm());
|
||||
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the name of a closest encloser, return the name *.closest_encloser.
|
||||
*
|
||||
* @param closestEncloser
|
||||
* The name to start with.
|
||||
* @return The wildcard name.
|
||||
*/
|
||||
private static Name ceWildcard(Name closestEncloser) {
|
||||
try {
|
||||
Name wc = Name.concatenate(asterisk_label, closestEncloser);
|
||||
|
||||
return wc;
|
||||
} catch (NameTooLongException e) {
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a qname and its proven closest encloser, calculate the "next
|
||||
* closest" name. Basically, this is the name that is one label longer than
|
||||
* the closest encloser that is still a subdomain of qname.
|
||||
*
|
||||
* @param qname
|
||||
* The qname.
|
||||
* @param closestEncloser
|
||||
* The closest encloser name.
|
||||
* @return The next closer name.
|
||||
*/
|
||||
private static Name nextClosest(Name qname, Name closestEncloser) {
|
||||
int strip = qname.labels() - closestEncloser.labels() - 1;
|
||||
|
||||
return (strip > 0) ? new Name(qname, strip) : qname;
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the NSEC3Record that matches a hash of a name.
|
||||
*
|
||||
* @param hash
|
||||
* The pre-calculated hash of a name.
|
||||
* @param zonename
|
||||
* The name of the zone that the NSEC3s are from.
|
||||
* @param nsec3s
|
||||
* A list of NSEC3Records from a given message.
|
||||
* @param params
|
||||
* The parameters used for calculating the hash.
|
||||
* @param bac
|
||||
* An already allocated ByteArrayComparator, for reuse. This may
|
||||
* be null.
|
||||
*
|
||||
* @return The matching NSEC3Record, if one is present.
|
||||
*/
|
||||
private static NSEC3Record findMatchingNSEC3(byte [] hash, Name zonename,
|
||||
List<NSEC3Record> nsec3s, NSEC3Parameters params,
|
||||
ByteArrayComparator bac) {
|
||||
Name n = hashName(hash, zonename);
|
||||
|
||||
for (NSEC3Record nsec3 : nsec3s) {
|
||||
// Skip nsec3 records that are using different parameters.
|
||||
if (!params.match(nsec3, bac)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (n.equals(nsec3.getName())) {
|
||||
return nsec3;
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a hash and a candidate NSEC3Record, determine if that NSEC3Record
|
||||
* covers the hash. Covers specifically means that the hash is in between
|
||||
* the owner and next hashes and does not equal either.
|
||||
*
|
||||
* @param nsec3
|
||||
* The candidate NSEC3Record.
|
||||
* @param hash
|
||||
* The precalculated hash.
|
||||
* @param bac
|
||||
* An already allocated comparator. This may be null.
|
||||
* @return True if the NSEC3Record covers the hash.
|
||||
*/
|
||||
private static boolean nsec3Covers(NSEC3Record nsec3, byte [] hash,
|
||||
ByteArrayComparator bac) {
|
||||
Name ownerName = nsec3.getName();
|
||||
byte [] owner = b32.fromString(ownerName.getLabelString(0));
|
||||
byte [] next = nsec3.getNext();
|
||||
|
||||
// This is the "normal case: owner < next and owner < hash < next
|
||||
if ((bac.compare(owner, hash) < 0) && (bac.compare(hash, next) < 0)) {
|
||||
return true;
|
||||
}
|
||||
// this is the end of zone case: next < owner && hash > owner || hash <
|
||||
// next
|
||||
if ((bac.compare(next, owner) <= 0) &&
|
||||
((bac.compare(hash, next) < 0) ||
|
||||
(bac.compare(owner, hash) < 0))) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Otherwise, the NSEC3 does not cover the hash.
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a pre-hashed name, find a covering NSEC3 from among a list of
|
||||
* NSEC3s.
|
||||
*
|
||||
* @param hash
|
||||
* The hash to consider.
|
||||
* @param zonename
|
||||
* The name of the zone.
|
||||
* @param nsec3s
|
||||
* The list of NSEC3s present in a message.
|
||||
* @param params
|
||||
* The NSEC3 parameters used to generate the hash -- NSEC3s that
|
||||
* do not use those parameters will be skipped.
|
||||
*
|
||||
* @return A covering NSEC3 if one is present, null otherwise.
|
||||
*/
|
||||
private static NSEC3Record findCoveringNSEC3(byte [] hash, Name zonename,
|
||||
List<NSEC3Record> nsec3s, NSEC3Parameters params,
|
||||
ByteArrayComparator bac) {
|
||||
ByteArrayComparator comparator = new ByteArrayComparator();
|
||||
|
||||
for (NSEC3Record nsec3 : nsec3s) {
|
||||
if (!params.match(nsec3, bac)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (nsec3Covers(nsec3, hash, comparator)) {
|
||||
return nsec3;
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a name and a list of NSEC3s, find the candidate closest encloser.
|
||||
* This will be the first ancestor of 'name' (including itself) to have a
|
||||
* matching NSEC3 RR.
|
||||
*
|
||||
* @param name
|
||||
* The name the start with.
|
||||
* @param zonename
|
||||
* The name of the zone that the NSEC3s came from.
|
||||
* @param nsec3s
|
||||
* The list of NSEC3s.
|
||||
* @param nsec3params
|
||||
* The NSEC3 parameters.
|
||||
* @param bac
|
||||
* A pre-allocated comparator. May be null.
|
||||
*
|
||||
* @return A CEResponse containing the closest encloser name and the NSEC3
|
||||
* RR that matched it, or null if there wasn't one.
|
||||
*/
|
||||
private static CEResponse findClosestEncloser(Name name, Name zonename,
|
||||
List<NSEC3Record> nsec3s, NSEC3Parameters params,
|
||||
ByteArrayComparator bac) {
|
||||
Name n = name;
|
||||
|
||||
NSEC3Record nsec3;
|
||||
|
||||
// This scans from longest name to shortest, so the first match we find
|
||||
// is the only viable candidate.
|
||||
// FIXME: modify so that the NSEC3 matching the zone apex need not be
|
||||
// present.
|
||||
while (n.labels() >= zonename.labels()) {
|
||||
nsec3 = findMatchingNSEC3(hash(n, params), zonename,
|
||||
nsec3s, params, bac);
|
||||
|
||||
if (nsec3 != null) {
|
||||
return new CEResponse(n, nsec3);
|
||||
}
|
||||
|
||||
n = new Name(n, 1);
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a List of nsec3 RRs, find and prove the closest encloser to qname.
|
||||
*
|
||||
* @param qname
|
||||
* The qname in question.
|
||||
* @param zonename
|
||||
* The name of the zone that the NSEC3 RRs come from.
|
||||
* @param nsec3s
|
||||
* The list of NSEC3s found the this response (already verified).
|
||||
* @param params
|
||||
* The NSEC3 parameters found in the response.
|
||||
* @param bac
|
||||
* A pre-allocated comparator. May be null.
|
||||
* @param proveDoesNotExist
|
||||
* If true, then if the closest encloser turns out to be qname,
|
||||
* then null is returned.
|
||||
* @return null if the proof isn't completed. Otherwise, return a CEResponse
|
||||
* object which contains the closest encloser name and the NSEC3
|
||||
* that matches it.
|
||||
*/
|
||||
private static CEResponse proveClosestEncloser(Name qname, Name zonename,
|
||||
List<NSEC3Record> nsec3s, NSEC3Parameters params,
|
||||
ByteArrayComparator bac, boolean proveDoesNotExist, List<String> errorList) {
|
||||
CEResponse candidate = findClosestEncloser(qname, zonename, nsec3s,
|
||||
params, bac);
|
||||
|
||||
if (candidate == null) {
|
||||
errorList.add("Could not find a candidate for the closest encloser");
|
||||
st_log.debug("proveClosestEncloser: could not find a " +
|
||||
"candidate for the closest encloser.");
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
if (candidate.closestEncloser.equals(qname)) {
|
||||
if (proveDoesNotExist) {
|
||||
errorList.add("Proven closest encloser proved that the qname existed and should not have");
|
||||
st_log.debug("proveClosestEncloser: proved that qname existed!");
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
// otherwise, we need to nothing else to prove that qname is its own
|
||||
// closest encloser.
|
||||
return candidate;
|
||||
}
|
||||
|
||||
// If the closest encloser is actually a delegation, then the response
|
||||
// should have been a referral. If it is a DNAME, then it should have
|
||||
// been
|
||||
// a DNAME response.
|
||||
if (candidate.ce_nsec3.hasType(Type.NS) &&
|
||||
!candidate.ce_nsec3.hasType(Type.SOA)) {
|
||||
errorList.add("Proven closest encloser was a delegation");
|
||||
st_log.debug("proveClosestEncloser: closest encloser " +
|
||||
"was a delegation!");
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
if (candidate.ce_nsec3.hasType(Type.DNAME)) {
|
||||
errorList.add("Proven closest encloser was a DNAME");
|
||||
st_log.debug("proveClosestEncloser: closest encloser was a DNAME!");
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
// Otherwise, we need to show that the next closer name is covered.
|
||||
Name nextClosest = nextClosest(qname, candidate.closestEncloser);
|
||||
|
||||
byte [] nc_hash = hash(nextClosest, params);
|
||||
candidate.nc_nsec3 = findCoveringNSEC3(nc_hash, zonename, nsec3s,
|
||||
params, bac);
|
||||
|
||||
if (candidate.nc_nsec3 == null) {
|
||||
errorList.add("Could not find proof that the closest encloser was the closest encloser");
|
||||
errorList.add("hash " + hashName(nc_hash, zonename) + " is not covered by any NSEC3 RRs");
|
||||
st_log.debug("Could not find proof that the " +
|
||||
"closest encloser was the closest encloser");
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
return candidate;
|
||||
}
|
||||
|
||||
private static int maxIterations(int baseAlg, int keysize) {
|
||||
switch (baseAlg) {
|
||||
case DnsSecVerifier.RSA:
|
||||
|
||||
if (keysize == 0) {
|
||||
return 2500; // the max at 4096
|
||||
}
|
||||
|
||||
if (keysize > 2048) {
|
||||
return 2500;
|
||||
}
|
||||
|
||||
if (keysize > 1024) {
|
||||
return 500;
|
||||
}
|
||||
|
||||
if (keysize > 0) {
|
||||
return 150;
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case DnsSecVerifier.DSA:
|
||||
|
||||
if (keysize == 0) {
|
||||
return 5000; // the max at 2048;
|
||||
}
|
||||
|
||||
if (keysize > 1024) {
|
||||
return 5000;
|
||||
}
|
||||
|
||||
if (keysize > 0) {
|
||||
return 1500;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
private static boolean validIterations(NSEC3Parameters nsec3params,
|
||||
RRset dnskey_rrset, DnsSecVerifier verifier) {
|
||||
// for now, we return the maximum iterations based simply on the key
|
||||
// algorithms that may have been used to sign the NSEC3 RRsets.
|
||||
int max_iterations = 0;
|
||||
|
||||
for (Iterator i = dnskey_rrset.rrs(); i.hasNext();) {
|
||||
DNSKEYRecord dnskey = (DNSKEYRecord) i.next();
|
||||
int baseAlg = verifier.baseAlgorithm(dnskey.getAlgorithm());
|
||||
int iters = maxIterations(baseAlg, 0);
|
||||
max_iterations = (max_iterations < iters) ? iters
|
||||
: max_iterations;
|
||||
}
|
||||
|
||||
if (nsec3params.iterations > max_iterations) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine if all of the NSEC3s in a response are legally ignoreable
|
||||
* (i.e., their presence should lead to an INSECURE result). Currently, this
|
||||
* is solely based on iterations.
|
||||
*
|
||||
* @param nsec3s
|
||||
* The list of NSEC3s. If there is more than one set of NSEC3
|
||||
* parameters present, this test will not be performed.
|
||||
* @param dnskey_rrset
|
||||
* The set of validating DNSKEYs.
|
||||
* @param verifier
|
||||
* The verifier used to verify the NSEC3 RRsets. This is solely
|
||||
* used to map algorithm aliases.
|
||||
* @return true if all of the NSEC3s can be legally ignored, false if not.
|
||||
*/
|
||||
public static boolean allNSEC3sIgnoreable(List<NSEC3Record> nsec3s,
|
||||
RRset dnskey_rrset, DnsSecVerifier verifier) {
|
||||
NSEC3Parameters params = nsec3Parameters(nsec3s);
|
||||
|
||||
if (params == null) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return !validIterations(params, dnskey_rrset, verifier);
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine if the set of NSEC3 records provided with a response prove NAME
|
||||
* ERROR. This means that the NSEC3s prove a) the closest encloser exists,
|
||||
* b) the direct child of the closest encloser towards qname doesn't exist,
|
||||
* and c) *.closest encloser does not exist.
|
||||
*
|
||||
* @param nsec3s
|
||||
* The list of NSEC3s.
|
||||
* @param qname
|
||||
* The query name to check against.
|
||||
* @param zonename
|
||||
* This is the name of the zone that the NSEC3s belong to. This
|
||||
* may be discovered in any number of ways. A good one is to use
|
||||
* the signerName from the NSEC3 record's RRSIG.
|
||||
* @return SecurityStatus.SECURE of the Name Error is proven by the NSEC3
|
||||
* RRs, BOGUS if not, INSECURE if all of the NSEC3s could be validly
|
||||
* ignored.
|
||||
*/
|
||||
public static boolean proveNameError(List<NSEC3Record> nsec3s, Name qname,
|
||||
Name zonename, List<String> errorList) {
|
||||
if ((nsec3s == null) || (nsec3s.size() == 0)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
|
||||
|
||||
if (nsec3params == null) {
|
||||
errorList.add("Could not find a single set of NSEC3 parameters (multiple parameters present");
|
||||
st_log.debug("Could not find a single set of " +
|
||||
"NSEC3 parameters (multiple parameters present).");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
ByteArrayComparator bac = new ByteArrayComparator();
|
||||
|
||||
// First locate and prove the closest encloser to qname. We will use the
|
||||
// variant that fails if the closest encloser turns out to be qname.
|
||||
CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s,
|
||||
nsec3params, bac, true, errorList);
|
||||
|
||||
if (ce == null) {
|
||||
errorList.add("Failed to find the closest encloser as part of the NSEC3 proof");
|
||||
st_log.debug("proveNameError: failed to prove a closest encloser.");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// At this point, we know that qname does not exist. Now we need to
|
||||
// prove
|
||||
// that the wildcard does not exist.
|
||||
Name wc = ceWildcard(ce.closestEncloser);
|
||||
byte [] wc_hash = hash(wc, nsec3params);
|
||||
NSEC3Record nsec3 = findCoveringNSEC3(wc_hash, zonename, nsec3s,
|
||||
nsec3params, bac);
|
||||
|
||||
if (nsec3 == null) {
|
||||
errorList.add("Failed to prove that the applicable wildcard did not exist");
|
||||
st_log.debug("proveNameError: could not prove that the " +
|
||||
"applicable wildcard did not exist.");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine if the NSEC3s provided in a response prove the NOERROR/NODATA
|
||||
* status. There are a number of different variants to this:
|
||||
*
|
||||
* 1) Normal NODATA -- qname is matched to an NSEC3 record, type is not
|
||||
* present.
|
||||
*
|
||||
* 2) ENT NODATA -- because there must be NSEC3 record for
|
||||
* empty-non-terminals, this is the same as #1.
|
||||
*
|
||||
* 3) NSEC3 ownername NODATA -- qname matched an existing, lone NSEC3
|
||||
* ownername, but qtype was not NSEC3. NOTE: as of nsec-05, this case no
|
||||
* longer exists.
|
||||
*
|
||||
* 4) Wildcard NODATA -- A wildcard matched the name, but not the type.
|
||||
*
|
||||
* 5) Opt-In DS NODATA -- the qname is covered by an opt-in span and qtype
|
||||
* == DS. (or maybe some future record with the same parent-side-only
|
||||
* property)
|
||||
*
|
||||
* @param nsec3s
|
||||
* The NSEC3Records to consider.
|
||||
* @param qname
|
||||
* The qname in question.
|
||||
* @param qtype
|
||||
* The qtype in question.
|
||||
* @param zonename
|
||||
* The name of the zone that the NSEC3s came from.
|
||||
* @return true if the NSEC3s prove the proposition.
|
||||
*/
|
||||
public static boolean proveNodata(List<NSEC3Record> nsec3s, Name qname,
|
||||
int qtype, Name zonename, List<String> errorList) {
|
||||
if ((nsec3s == null) || (nsec3s.size() == 0)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
|
||||
|
||||
if (nsec3params == null) {
|
||||
st_log.debug("could not find a single set of " +
|
||||
"NSEC3 parameters (multiple parameters present)");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
ByteArrayComparator bac = new ByteArrayComparator();
|
||||
|
||||
NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params),
|
||||
zonename, nsec3s, nsec3params, bac);
|
||||
|
||||
// Cases 1 & 2.
|
||||
if (nsec3 != null) {
|
||||
if (nsec3.hasType(qtype)) {
|
||||
st_log.debug(
|
||||
"proveNodata: Matching NSEC3 proved that type existed!");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
if (nsec3.hasType(Type.CNAME)) {
|
||||
st_log.debug("proveNodata: Matching NSEC3 proved " +
|
||||
"that a CNAME existed!");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// For cases 3 - 5, we need the proven closest encloser, and it can't
|
||||
// match qname. Although, at this point, we know that it won't since we
|
||||
// just checked that.
|
||||
CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s,
|
||||
nsec3params, bac, true, errorList);
|
||||
|
||||
// At this point, not finding a match or a proven closest encloser is a
|
||||
// problem.
|
||||
if (ce == null) {
|
||||
st_log.debug("proveNodata: did not match qname, " +
|
||||
"nor found a proven closest encloser.");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Case 3: REMOVED
|
||||
|
||||
// Case 4:
|
||||
Name wc = ceWildcard(ce.closestEncloser);
|
||||
nsec3 = findMatchingNSEC3(hash(wc, nsec3params), zonename, nsec3s,
|
||||
nsec3params, bac);
|
||||
|
||||
if (nsec3 != null) {
|
||||
if (nsec3.hasType(qtype)) {
|
||||
st_log.debug("proveNodata: matching wildcard had qtype!");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Case 5.
|
||||
if (qtype != Type.DS) {
|
||||
st_log.debug("proveNodata: could not find matching NSEC3, " +
|
||||
"nor matching wildcard, and qtype is not DS -- no more options.");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// We need to make sure that the covering NSEC3 is opt-in.
|
||||
if (!isOptOut(ce.nc_nsec3)) {
|
||||
st_log.debug("proveNodata: covering NSEC3 was not " +
|
||||
"opt-in in an opt-in DS NOERROR/NODATA case.");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Prove that a positive wildcard match was appropriate (no direct match
|
||||
* RRset).
|
||||
*
|
||||
* @param nsec3s
|
||||
* The NSEC3 records to work with.
|
||||
* @param qname
|
||||
* The qname that was matched to the wildcard
|
||||
* @param zonename
|
||||
* The name of the zone that the NSEC3s come from.
|
||||
* @param wildcard
|
||||
* The purported wildcard that matched.
|
||||
* @return true if the NSEC3 records prove this case.
|
||||
*/
|
||||
public static boolean proveWildcard(List<NSEC3Record> nsec3s, Name qname,
|
||||
Name zonename, Name wildcard, List<String> errorList) {
|
||||
if ((nsec3s == null) || (nsec3s.size() == 0)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((qname == null) || (wildcard == null)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
|
||||
|
||||
if (nsec3params == null) {
|
||||
errorList.add("Could not find a single set of NSEC3 parameters (multiple parameters present)");
|
||||
st_log.debug(
|
||||
"couldn't find a single set of NSEC3 parameters (multiple parameters present).");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
ByteArrayComparator bac = new ByteArrayComparator();
|
||||
|
||||
// We know what the (purported) closest encloser is by just looking at
|
||||
// the
|
||||
// supposed generating wildcard.
|
||||
CEResponse candidate = new CEResponse(new Name(wildcard, 1), null);
|
||||
|
||||
// Now we still need to prove that the original data did not exist.
|
||||
// Otherwise, we need to show that the next closer name is covered.
|
||||
Name nextClosest = nextClosest(qname, candidate.closestEncloser);
|
||||
candidate.nc_nsec3 = findCoveringNSEC3(hash(nextClosest, nsec3params),
|
||||
zonename, nsec3s, nsec3params, bac);
|
||||
|
||||
if (candidate.nc_nsec3 == null) {
|
||||
errorList.add("Did not find a NSEC3 that covered the next closer name to '" +
|
||||
qname + "' from '" + candidate.closestEncloser + "' (derived from the wildcard: " +
|
||||
wildcard + ")");
|
||||
st_log.debug("proveWildcard: did not find a covering NSEC3 " +
|
||||
"that covered the next closer name to " + qname + " from " +
|
||||
candidate.closestEncloser + " (derived from wildcard " +
|
||||
wildcard + ")");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Prove that a DS response either had no DS, or wasn't a delegation point.
|
||||
*
|
||||
* Fundamentally there are two cases here: normal NODATA and Opt-In NODATA.
|
||||
*
|
||||
* @param nsec3s
|
||||
* The NSEC3 RRs to examine.
|
||||
* @param qname
|
||||
* The name of the DS in question.
|
||||
* @param zonename
|
||||
* The name of the zone that the NSEC3 RRs come from.
|
||||
*
|
||||
* @return SecurityStatus.SECURE if it was proven that there is no DS in a
|
||||
* secure (i.e., not opt-in) way, SecurityStatus.INSECURE if there
|
||||
* was no DS in an insecure (i.e., opt-in) way,
|
||||
* SecurityStatus.INDETERMINATE if it was clear that this wasn't a
|
||||
* delegation point, and SecurityStatus.BOGUS if the proofs don't
|
||||
* work out.
|
||||
*/
|
||||
public static byte proveNoDS(List<NSEC3Record> nsec3s, Name qname,
|
||||
Name zonename, List<String> errorList) {
|
||||
if ((nsec3s == null) || (nsec3s.size() == 0)) {
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
NSEC3Parameters nsec3params = nsec3Parameters(nsec3s);
|
||||
|
||||
if (nsec3params == null) {
|
||||
errorList.add("Could not find a single set of NSEC3 parameters (multiple parameters present)");
|
||||
st_log.debug("couldn't find a single set of " +
|
||||
"NSEC3 parameters (multiple parameters present).");
|
||||
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
ByteArrayComparator bac = new ByteArrayComparator();
|
||||
|
||||
// Look for a matching NSEC3 to qname -- this is the normal NODATA case.
|
||||
NSEC3Record nsec3 = findMatchingNSEC3(hash(qname, nsec3params),
|
||||
zonename, nsec3s, nsec3params, bac);
|
||||
|
||||
if (nsec3 != null) {
|
||||
// If the matching NSEC3 has the SOA bit set, it is from the wrong
|
||||
// zone (the child instead of the parent). If it has the DS bit set,
|
||||
// then we were lied to.
|
||||
if (nsec3.hasType(Type.SOA) || nsec3.hasType(Type.DS)) {
|
||||
errorList.add("Matching NSEC3 is incorrectly from the child instead of the parent (SOA or DS bit set)");
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
// If the NSEC3 RR doesn't have the NS bit set, then this wasn't a
|
||||
// delegation point.
|
||||
if (!nsec3.hasType(Type.NS)) {
|
||||
return SecurityStatus.INDETERMINATE;
|
||||
}
|
||||
|
||||
// Otherwise, this proves no DS.
|
||||
return SecurityStatus.SECURE;
|
||||
}
|
||||
|
||||
// Otherwise, we are probably in the opt-in case.
|
||||
CEResponse ce = proveClosestEncloser(qname, zonename, nsec3s,
|
||||
nsec3params, bac, true, errorList);
|
||||
|
||||
if (ce == null) {
|
||||
errorList.add("Failed to prove the closest encloser as part of a 'No DS' proof");
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
// If we had the closest encloser proof, then we need to check that the
|
||||
// covering NSEC3 was opt-in -- the proveClosestEncloser step already
|
||||
// checked to see if the closest encloser was a delegation or DNAME.
|
||||
if (isOptOut(ce.nc_nsec3)) {
|
||||
return SecurityStatus.SECURE;
|
||||
}
|
||||
|
||||
errorList.add("Failed to find a covering NSEC3 for 'No DS' proof");
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is a class to encapsulate a unique set of NSEC3 parameters:
|
||||
* algorithm, iterations, and salt.
|
||||
*/
|
||||
private static class NSEC3Parameters {
|
||||
public int alg;
|
||||
public byte [] salt;
|
||||
public int iterations;
|
||||
private NSEC3PARAMRecord nsec3paramrec;
|
||||
|
||||
public NSEC3Parameters(NSEC3Record r) {
|
||||
alg = r.getHashAlgorithm();
|
||||
salt = r.getSalt();
|
||||
iterations = r.getIterations();
|
||||
|
||||
nsec3paramrec = new NSEC3PARAMRecord(Name.root, DClass.IN, 0,
|
||||
alg, 0, iterations, salt);
|
||||
}
|
||||
|
||||
public boolean match(NSEC3Record r, ByteArrayComparator bac) {
|
||||
if (r.getHashAlgorithm() != alg) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (r.getIterations() != iterations) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((salt == null) && (r.getSalt() != null)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (salt == null) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (bac == null) {
|
||||
bac = new ByteArrayComparator();
|
||||
}
|
||||
|
||||
return bac.compare(r.getSalt(), salt) == 0;
|
||||
}
|
||||
|
||||
public byte[] hash(Name name) throws NoSuchAlgorithmException {
|
||||
return nsec3paramrec.hashName(name);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* This is just a simple class to encapsulate the response to a closest
|
||||
* encloser proof.
|
||||
*/
|
||||
private static class CEResponse {
|
||||
public Name closestEncloser;
|
||||
public NSEC3Record ce_nsec3;
|
||||
public NSEC3Record nc_nsec3;
|
||||
|
||||
public CEResponse(Name ce, NSEC3Record nsec3) {
|
||||
this.closestEncloser = ce;
|
||||
this.ce_nsec3 = nsec3;
|
||||
}
|
||||
}
|
||||
}
|
||||
382
src/com/verisign/tat/dnssec/SMessage.java
Normal file
382
src/com/verisign/tat/dnssec/SMessage.java
Normal file
@@ -0,0 +1,382 @@
|
||||
/***************************** -*- Java -*- ********************************\
|
||||
* *
|
||||
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
|
||||
* *
|
||||
* This software is provided solely in connection with the terms of the *
|
||||
* license agreement. Any other use without the prior express written *
|
||||
* permission of VeriSign is completely prohibited. The software and *
|
||||
* documentation are "Commercial Items", as that term is defined in 48 *
|
||||
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
|
||||
* "Commercial Computer Software Documentation" as such terms are defined *
|
||||
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
|
||||
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
|
||||
* section 227.7202, as applicable. Pursuant to the above and other *
|
||||
* relevant sections of the Code of Federal Regulations, as applicable, *
|
||||
* VeriSign's publications, commercial computer software, and commercial *
|
||||
* computer software documentation are distributed and licensed to United *
|
||||
* States Government end users with only those rights as granted to all *
|
||||
* other end users, according to the terms and conditions contained in the *
|
||||
* license agreement(s) that accompany the products and software *
|
||||
* documentation. *
|
||||
* *
|
||||
\***************************************************************************/
|
||||
|
||||
package com.verisign.tat.dnssec;
|
||||
|
||||
import org.xbill.DNS.*;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
|
||||
/**
|
||||
* This class represents a DNS message with resolver/validator state.
|
||||
*/
|
||||
public class SMessage {
|
||||
private static SRRset [] empty_srrset_array = new SRRset[0];
|
||||
private Header mHeader;
|
||||
private Record mQuestion;
|
||||
private OPTRecord mOPTRecord;
|
||||
private List<SRRset> [] mSection;
|
||||
private SecurityStatus mSecurityStatus;
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
public SMessage(Header h) {
|
||||
mSection = (List<SRRset> []) new List[3];
|
||||
mHeader = h;
|
||||
mSecurityStatus = new SecurityStatus();
|
||||
}
|
||||
|
||||
public SMessage(int id) {
|
||||
this(new Header(id));
|
||||
}
|
||||
|
||||
public SMessage() {
|
||||
this(new Header(0));
|
||||
}
|
||||
|
||||
public SMessage(Message m) {
|
||||
this(m.getHeader());
|
||||
mQuestion = m.getQuestion();
|
||||
mOPTRecord = m.getOPT();
|
||||
|
||||
for (int i = Section.ANSWER; i <= Section.ADDITIONAL; i++) {
|
||||
RRset [] rrsets = m.getSectionRRsets(i);
|
||||
|
||||
for (int j = 0; j < rrsets.length; j++) {
|
||||
addRRset(rrsets[j], i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public Header getHeader() {
|
||||
return mHeader;
|
||||
}
|
||||
|
||||
public void setHeader(Header h) {
|
||||
mHeader = h;
|
||||
}
|
||||
|
||||
public void setQuestion(Record r) {
|
||||
mQuestion = r;
|
||||
}
|
||||
|
||||
public Record getQuestion() {
|
||||
return mQuestion;
|
||||
}
|
||||
|
||||
public Name getQName() {
|
||||
return getQuestion().getName();
|
||||
}
|
||||
|
||||
public int getQType() {
|
||||
return getQuestion().getType();
|
||||
}
|
||||
|
||||
public int getQClass() {
|
||||
return getQuestion().getDClass();
|
||||
}
|
||||
|
||||
public void setOPT(OPTRecord r) {
|
||||
mOPTRecord = r;
|
||||
}
|
||||
|
||||
public OPTRecord getOPT() {
|
||||
return mOPTRecord;
|
||||
}
|
||||
|
||||
public List<SRRset> getSectionList(int section) {
|
||||
if ((section <= Section.QUESTION) || (section > Section.ADDITIONAL)) {
|
||||
throw new IllegalArgumentException("Invalid section.");
|
||||
}
|
||||
|
||||
if (mSection[section - 1] == null) {
|
||||
mSection[section - 1] = new LinkedList<SRRset>();
|
||||
}
|
||||
|
||||
return (List<SRRset>) mSection[section - 1];
|
||||
}
|
||||
|
||||
public void addRRset(SRRset srrset, int section) {
|
||||
if ((section <= Section.QUESTION) || (section > Section.ADDITIONAL)) {
|
||||
throw new IllegalArgumentException("Invalid section");
|
||||
}
|
||||
|
||||
if (srrset.getType() == Type.OPT) {
|
||||
mOPTRecord = (OPTRecord) srrset.first();
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
List<SRRset> sectionList = getSectionList(section);
|
||||
sectionList.add(srrset);
|
||||
}
|
||||
|
||||
public void addRRset(RRset rrset, int section) {
|
||||
if (rrset instanceof SRRset) {
|
||||
addRRset((SRRset) rrset, section);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
SRRset srrset = new SRRset(rrset);
|
||||
addRRset(srrset, section);
|
||||
}
|
||||
|
||||
public void prependRRsets(List<SRRset> rrsets, int section) {
|
||||
if ((section <= Section.QUESTION) || (section > Section.ADDITIONAL)) {
|
||||
throw new IllegalArgumentException("Invalid section");
|
||||
}
|
||||
|
||||
List<SRRset> sectionList = getSectionList(section);
|
||||
sectionList.addAll(0, rrsets);
|
||||
}
|
||||
|
||||
public SRRset [] getSectionRRsets(int section) {
|
||||
List<SRRset> slist = getSectionList(section);
|
||||
|
||||
return (SRRset []) slist.toArray(empty_srrset_array);
|
||||
}
|
||||
|
||||
public SRRset [] getSectionRRsets(int section, int qtype) {
|
||||
List<SRRset> slist = getSectionList(section);
|
||||
|
||||
if (slist.size() == 0) {
|
||||
return new SRRset[0];
|
||||
}
|
||||
|
||||
ArrayList<SRRset> result = new ArrayList<SRRset>(slist.size());
|
||||
|
||||
for (SRRset rrset : slist) {
|
||||
if (rrset.getType() == qtype) {
|
||||
result.add(rrset);
|
||||
}
|
||||
}
|
||||
|
||||
return (SRRset []) result.toArray(empty_srrset_array);
|
||||
}
|
||||
|
||||
public void deleteRRset(SRRset rrset, int section) {
|
||||
List<SRRset> slist = getSectionList(section);
|
||||
|
||||
if (slist.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
slist.remove(rrset);
|
||||
}
|
||||
|
||||
public void clear(int section) {
|
||||
if ((section < Section.QUESTION) || (section > Section.ADDITIONAL)) {
|
||||
throw new IllegalArgumentException("Invalid section.");
|
||||
}
|
||||
|
||||
if (section == Section.QUESTION) {
|
||||
mQuestion = null;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if (section == Section.ADDITIONAL) {
|
||||
mOPTRecord = null;
|
||||
}
|
||||
|
||||
mSection[section - 1] = null;
|
||||
}
|
||||
|
||||
public void clear() {
|
||||
for (int s = Section.QUESTION; s <= Section.ADDITIONAL; s++) {
|
||||
clear(s);
|
||||
}
|
||||
}
|
||||
|
||||
public int getRcode() {
|
||||
// FIXME: might want to do what Message does and handle extended rcodes.
|
||||
return mHeader.getRcode();
|
||||
}
|
||||
|
||||
public int getStatus() {
|
||||
return mSecurityStatus.getStatus();
|
||||
}
|
||||
|
||||
public void setStatus(byte status) {
|
||||
mSecurityStatus.setStatus(status);
|
||||
}
|
||||
|
||||
public SecurityStatus getSecurityStatus() {
|
||||
return mSecurityStatus;
|
||||
}
|
||||
|
||||
public void setSecurityStatus(SecurityStatus s) {
|
||||
if (s == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
mSecurityStatus = s;
|
||||
}
|
||||
|
||||
public Message getMessage() {
|
||||
// Generate our new message.
|
||||
Message m = new Message(mHeader.getID());
|
||||
|
||||
// Convert the header
|
||||
// We do this for two reasons: 1) setCount() is package scope, so we
|
||||
// can't do that, and 2) setting the header on a message after creating
|
||||
// the message frequently gets stuff out of sync, leading to malformed
|
||||
// wire format messages.
|
||||
Header h = m.getHeader();
|
||||
h.setOpcode(mHeader.getOpcode());
|
||||
h.setRcode(mHeader.getRcode());
|
||||
|
||||
for (int i = 0; i < 16; i++) {
|
||||
if (Flags.isFlag(i)) {
|
||||
if (mHeader.getFlag(i)) {
|
||||
h.setFlag(i);
|
||||
} else {
|
||||
h.unsetFlag(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add all the records. -- this will set the counts correctly in the
|
||||
// message header.
|
||||
if (mQuestion != null) {
|
||||
m.addRecord(mQuestion, Section.QUESTION);
|
||||
}
|
||||
|
||||
for (int sec = Section.ANSWER; sec <= Section.ADDITIONAL; sec++) {
|
||||
List<SRRset> slist = getSectionList(sec);
|
||||
|
||||
for (SRRset rrset : slist) {
|
||||
for (Iterator<Record> j = rrset.rrs(); j.hasNext();) {
|
||||
m.addRecord(j.next(), sec);
|
||||
}
|
||||
|
||||
for (Iterator<RRSIGRecord> j = rrset.sigs(); j.hasNext();) {
|
||||
m.addRecord(j.next(), sec);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (mOPTRecord != null) {
|
||||
m.addRecord(mOPTRecord, Section.ADDITIONAL);
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
public int getCount(int section) {
|
||||
if (section == Section.QUESTION) {
|
||||
return (mQuestion == null) ? 0 : 1;
|
||||
}
|
||||
|
||||
List<SRRset> sectionList = getSectionList(section);
|
||||
|
||||
if (sectionList == null) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (sectionList.size() == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
int count = 0;
|
||||
|
||||
for (SRRset sr : sectionList) {
|
||||
count += sr.totalSize();
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
public String toString() {
|
||||
return getMessage().toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Find a specific (S)RRset in a given section.
|
||||
*
|
||||
* @param name
|
||||
* the name of the RRset.
|
||||
* @param type
|
||||
* the type of the RRset.
|
||||
* @param dclass
|
||||
* the class of the RRset.
|
||||
* @param section
|
||||
* the section to look in (ANSWER -> ADDITIONAL)
|
||||
*
|
||||
* @return The SRRset if found, null otherwise.
|
||||
*/
|
||||
public SRRset findRRset(Name name, int type, int dclass, int section) {
|
||||
if ((section <= Section.QUESTION) || (section > Section.ADDITIONAL)) {
|
||||
throw new IllegalArgumentException("Invalid section.");
|
||||
}
|
||||
|
||||
SRRset [] rrsets = getSectionRRsets(section);
|
||||
|
||||
for (int i = 0; i < rrsets.length; i++) {
|
||||
if (rrsets[i].getName().equals(name) &&
|
||||
(rrsets[i].getType() == type) &&
|
||||
(rrsets[i].getDClass() == dclass)) {
|
||||
return rrsets[i];
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Find an "answer" RRset. This will look for RRsets in the ANSWER section
|
||||
* that match the <qname,qtype,qclass>, taking into consideration CNAMEs.
|
||||
*
|
||||
* @param qname
|
||||
* The starting search name.
|
||||
* @param qtype
|
||||
* The search type.
|
||||
* @param qclass
|
||||
* The search class.
|
||||
*
|
||||
* @return a SRRset matching the query. This SRRset may have a different
|
||||
* name from qname, due to following a CNAME chain.
|
||||
*/
|
||||
public SRRset findAnswerRRset(Name qname, int qtype, int qclass) {
|
||||
SRRset [] srrsets = getSectionRRsets(Section.ANSWER);
|
||||
|
||||
for (int i = 0; i < srrsets.length; i++) {
|
||||
if (srrsets[i].getName().equals(qname) &&
|
||||
(srrsets[i].getType() == Type.CNAME)) {
|
||||
CNAMERecord cname = (CNAMERecord) srrsets[i].first();
|
||||
qname = cname.getTarget();
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
if (srrsets[i].getName().equals(qname) &&
|
||||
(srrsets[i].getType() == qtype) &&
|
||||
(srrsets[i].getDClass() == qclass)) {
|
||||
return srrsets[i];
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
}
|
||||
144
src/com/verisign/tat/dnssec/SRRset.java
Normal file
144
src/com/verisign/tat/dnssec/SRRset.java
Normal file
@@ -0,0 +1,144 @@
|
||||
/***************************** -*- Java -*- ********************************\
|
||||
* *
|
||||
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
|
||||
* *
|
||||
* This software is provided solely in connection with the terms of the *
|
||||
* license agreement. Any other use without the prior express written *
|
||||
* permission of VeriSign is completely prohibited. The software and *
|
||||
* documentation are "Commercial Items", as that term is defined in 48 *
|
||||
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
|
||||
* "Commercial Computer Software Documentation" as such terms are defined *
|
||||
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
|
||||
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
|
||||
* section 227.7202, as applicable. Pursuant to the above and other *
|
||||
* relevant sections of the Code of Federal Regulations, as applicable, *
|
||||
* VeriSign's publications, commercial computer software, and commercial *
|
||||
* computer software documentation are distributed and licensed to United *
|
||||
* States Government end users with only those rights as granted to all *
|
||||
* other end users, according to the terms and conditions contained in the *
|
||||
* license agreement(s) that accompany the products and software *
|
||||
* documentation. *
|
||||
* *
|
||||
\***************************************************************************/
|
||||
|
||||
package com.verisign.tat.dnssec;
|
||||
|
||||
import org.xbill.DNS.*;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
|
||||
/**
|
||||
* A version of the RRset class overrides the standard security status.
|
||||
*/
|
||||
public class SRRset extends RRset {
|
||||
private SecurityStatus mSecurityStatus;
|
||||
|
||||
/** Create a new, blank SRRset. */
|
||||
public SRRset() {
|
||||
super();
|
||||
mSecurityStatus = new SecurityStatus();
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new SRRset from an existing RRset. This SRRset will contain that
|
||||
* same internal Record objects as the original RRset.
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
public SRRset(RRset r) {
|
||||
this();
|
||||
|
||||
for (Iterator i = r.rrs(); i.hasNext();) {
|
||||
addRR((Record) i.next());
|
||||
}
|
||||
|
||||
for (Iterator i = r.sigs(); i.hasNext();) {
|
||||
addRR((Record) i.next());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the current security status (generally: UNCHECKED, BOGUS, or
|
||||
* SECURE).
|
||||
*/
|
||||
public int getSecurity() {
|
||||
return getSecurityStatus();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the current security status (generally: UNCHECKED, BOGUS, or
|
||||
* SECURE).
|
||||
*/
|
||||
public byte getSecurityStatus() {
|
||||
return mSecurityStatus.getStatus();
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the current security status for this SRRset. This status will be
|
||||
* shared amongst all copies of this SRRset (created with cloneSRRset())
|
||||
*/
|
||||
public void setSecurityStatus(byte status) {
|
||||
mSecurityStatus.setStatus(status);
|
||||
}
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
public Iterator<Record> rrs() {
|
||||
return (Iterator<Record>) super.rrs();
|
||||
}
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
public Iterator<RRSIGRecord> sigs() {
|
||||
return (Iterator<RRSIGRecord>) super.sigs();
|
||||
}
|
||||
|
||||
public int totalSize() {
|
||||
int num_sigs = 0;
|
||||
|
||||
for (Iterator<RRSIGRecord> i = sigs(); i.hasNext();) {
|
||||
num_sigs++;
|
||||
i.next();
|
||||
}
|
||||
|
||||
return size() + num_sigs;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The total number of records (data + sigs) in the SRRset.
|
||||
*/
|
||||
public int getNumRecords() {
|
||||
return totalSize();
|
||||
}
|
||||
|
||||
public RRSIGRecord firstSig() {
|
||||
for (Iterator<RRSIGRecord> i = sigs(); i.hasNext();) {
|
||||
return i.next();
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return true if this RRset has RRSIG records that cover data records.
|
||||
* (i.e., RRSIG SRRsets return false)
|
||||
*/
|
||||
public boolean isSigned() {
|
||||
if (getType() == Type.RRSIG) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return firstSig() != null;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The "signer" name for this SRRset, if signed, or null if not.
|
||||
*/
|
||||
public Name getSignerName() {
|
||||
RRSIGRecord sig = (RRSIGRecord) firstSig();
|
||||
|
||||
if (sig == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return sig.getSigner();
|
||||
}
|
||||
}
|
||||
112
src/com/verisign/tat/dnssec/SecurityStatus.java
Normal file
112
src/com/verisign/tat/dnssec/SecurityStatus.java
Normal file
@@ -0,0 +1,112 @@
|
||||
/***************************** -*- Java -*- ********************************\
|
||||
* *
|
||||
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
|
||||
* *
|
||||
* This software is provided solely in connection with the terms of the *
|
||||
* license agreement. Any other use without the prior express written *
|
||||
* permission of VeriSign is completely prohibited. The software and *
|
||||
* documentation are "Commercial Items", as that term is defined in 48 *
|
||||
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
|
||||
* "Commercial Computer Software Documentation" as such terms are defined *
|
||||
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
|
||||
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
|
||||
* section 227.7202, as applicable. Pursuant to the above and other *
|
||||
* relevant sections of the Code of Federal Regulations, as applicable, *
|
||||
* VeriSign's publications, commercial computer software, and commercial *
|
||||
* computer software documentation are distributed and licensed to United *
|
||||
* States Government end users with only those rights as granted to all *
|
||||
* other end users, according to the terms and conditions contained in the *
|
||||
* license agreement(s) that accompany the products and software *
|
||||
* documentation. *
|
||||
* *
|
||||
\***************************************************************************/
|
||||
|
||||
package com.verisign.tat.dnssec;
|
||||
|
||||
|
||||
/**
|
||||
* Codes for DNSSEC security statuses.
|
||||
*
|
||||
* @author davidb
|
||||
*/
|
||||
public class SecurityStatus {
|
||||
public static final byte INVALID = -1;
|
||||
|
||||
/**
|
||||
* UNCHECKED means that object has yet to be validated.
|
||||
*/
|
||||
public static final byte UNCHECKED = 0;
|
||||
|
||||
/**
|
||||
* BOGUS means that the object (RRset or message) failed to validate
|
||||
* (according to local policy), but should have validated.
|
||||
*/
|
||||
public static final byte BOGUS = 1;
|
||||
|
||||
/**
|
||||
* BAD is a synonym for BOGUS.
|
||||
*/
|
||||
public static final byte BAD = BOGUS;
|
||||
|
||||
/**
|
||||
* INDTERMINATE means that the object is insecure, but not authoritatively
|
||||
* so. Generally this means that the RRset is not below a configured trust
|
||||
* anchor.
|
||||
*/
|
||||
public static final byte INDETERMINATE = 2;
|
||||
|
||||
/**
|
||||
* INSECURE means that the object is authoritatively known to be insecure.
|
||||
* Generally this means that this RRset is below a trust anchor, but also
|
||||
* below a verified, insecure delegation.
|
||||
*/
|
||||
public static final byte INSECURE = 3;
|
||||
|
||||
/**
|
||||
* SECURE means that the object (RRset or message) validated according to
|
||||
* local policy.
|
||||
*/
|
||||
public static final byte SECURE = 4;
|
||||
private byte status;
|
||||
|
||||
public SecurityStatus() {
|
||||
status = UNCHECKED;
|
||||
}
|
||||
|
||||
public SecurityStatus(byte status) {
|
||||
setStatus(status);
|
||||
}
|
||||
|
||||
public static String string(int status) {
|
||||
switch (status) {
|
||||
case INVALID:
|
||||
return "Invalid";
|
||||
|
||||
case BOGUS:
|
||||
return "Bogus";
|
||||
|
||||
case SECURE:
|
||||
return "Secure";
|
||||
|
||||
case INSECURE:
|
||||
return "Insecure";
|
||||
|
||||
case INDETERMINATE:
|
||||
return "Indeterminate";
|
||||
|
||||
case UNCHECKED:
|
||||
return "Unchecked";
|
||||
|
||||
default:
|
||||
return "UNKNOWN";
|
||||
}
|
||||
}
|
||||
|
||||
public byte getStatus() {
|
||||
return status;
|
||||
}
|
||||
|
||||
public void setStatus(byte status) {
|
||||
this.status = status;
|
||||
}
|
||||
}
|
||||
486
src/com/verisign/tat/dnssec/SignUtils.java
Normal file
486
src/com/verisign/tat/dnssec/SignUtils.java
Normal file
@@ -0,0 +1,486 @@
|
||||
/***************************** -*- Java -*- ********************************\
|
||||
* *
|
||||
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
|
||||
* *
|
||||
* This software is provided solely in connection with the terms of the *
|
||||
* license agreement. Any other use without the prior express written *
|
||||
* permission of VeriSign is completely prohibited. The software and *
|
||||
* documentation are "Commercial Items", as that term is defined in 48 *
|
||||
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
|
||||
* "Commercial Computer Software Documentation" as such terms are defined *
|
||||
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
|
||||
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
|
||||
* section 227.7202, as applicable. Pursuant to the above and other *
|
||||
* relevant sections of the Code of Federal Regulations, as applicable, *
|
||||
* VeriSign's publications, commercial computer software, and commercial *
|
||||
* computer software documentation are distributed and licensed to United *
|
||||
* States Government end users with only those rights as granted to all *
|
||||
* other end users, according to the terms and conditions contained in the *
|
||||
* license agreement(s) that accompany the products and software *
|
||||
* documentation. *
|
||||
* *
|
||||
\***************************************************************************/
|
||||
|
||||
package com.verisign.tat.dnssec;
|
||||
|
||||
import org.apache.log4j.Logger;
|
||||
|
||||
import org.xbill.DNS.DNSKEYRecord;
|
||||
import org.xbill.DNS.DNSOutput;
|
||||
import org.xbill.DNS.Name;
|
||||
import org.xbill.DNS.RRSIGRecord;
|
||||
import org.xbill.DNS.RRset;
|
||||
import org.xbill.DNS.Record;
|
||||
import org.xbill.DNS.utils.base64;
|
||||
|
||||
import java.io.ByteArrayOutputStream;
|
||||
import java.io.IOException;
|
||||
|
||||
import java.security.SignatureException;
|
||||
import java.security.interfaces.DSAParams;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.Date;
|
||||
import java.util.Iterator;
|
||||
|
||||
|
||||
/**
|
||||
* This class contains a bunch of utility methods that are generally useful in
|
||||
* signing and verifying rrsets.
|
||||
*/
|
||||
public class SignUtils {
|
||||
// private static final int DSA_SIGNATURE_LENGTH = 20;
|
||||
private static final int ASN1_INT = 0x02;
|
||||
private static final int ASN1_SEQ = 0x30;
|
||||
public static final int RR_NORMAL = 0;
|
||||
public static final int RR_DELEGATION = 1;
|
||||
public static final int RR_GLUE = 2;
|
||||
public static final int RR_INVALID = 3;
|
||||
private static Logger log = Logger.getLogger(SignUtils.class);
|
||||
|
||||
/**
|
||||
* Generate from some basic information a prototype SIG RR containing
|
||||
* everything but the actual signature itself.
|
||||
*
|
||||
* @param rrset
|
||||
* the RRset being signed.
|
||||
* @param signer
|
||||
* the name of the signing key
|
||||
* @param alg
|
||||
* the algorithm of the signing key
|
||||
* @param keyid
|
||||
* the keyid (or footprint) of the signing key
|
||||
* @param start
|
||||
* the SIG inception time.
|
||||
* @param expire
|
||||
* the SIG expiration time.
|
||||
* @param sig_ttl
|
||||
* the TTL of the resulting SIG record.
|
||||
* @return a prototype signature based on the RRset and key information.
|
||||
*/
|
||||
public static RRSIGRecord generatePreRRSIG(RRset rrset, Name signer,
|
||||
int alg, int keyid, Date start, Date expire, long sig_ttl) {
|
||||
return new RRSIGRecord(rrset.getName(), rrset.getDClass(), sig_ttl,
|
||||
rrset.getType(), alg, rrset.getTTL(), expire, start, keyid, signer,
|
||||
null);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate from some basic information a prototype SIG RR containing
|
||||
* everything but the actual signature itself.
|
||||
*
|
||||
* @param rrset
|
||||
* the RRset being signed.
|
||||
* @param key
|
||||
* the public KEY RR counterpart to the key being used to sign
|
||||
* the RRset
|
||||
* @param start
|
||||
* the SIG inception time.
|
||||
* @param expire
|
||||
* the SIG expiration time.
|
||||
* @param sig_ttl
|
||||
* the TTL of the resulting SIG record.
|
||||
* @return a prototype signature based on the RRset and key information.
|
||||
*/
|
||||
public static RRSIGRecord generatePreRRSIG(RRset rrset, DNSKEYRecord key,
|
||||
Date start, Date expire, long sig_ttl) {
|
||||
return generatePreRRSIG(rrset, key.getName(), key.getAlgorithm(),
|
||||
key.getFootprint(), start, expire, sig_ttl);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate from some basic information a prototype SIG RR containing
|
||||
* everything but the actual signature itself.
|
||||
*
|
||||
* @param rec
|
||||
* the DNS record being signed (forming an entire RRset).
|
||||
* @param key
|
||||
* the public KEY RR counterpart to the key signing the record.
|
||||
* @param start
|
||||
* the SIG inception time.
|
||||
* @param expire
|
||||
* the SIG expiration time.
|
||||
* @param sig_ttl
|
||||
* the TTL of the result SIG record.
|
||||
* @return a prototype signature based on the Record and key information.
|
||||
*/
|
||||
public static RRSIGRecord generatePreRRSIG(Record rec, DNSKEYRecord key,
|
||||
Date start, Date expire, long sig_ttl) {
|
||||
return new RRSIGRecord(rec.getName(), rec.getDClass(), sig_ttl,
|
||||
rec.getType(), key.getAlgorithm(), rec.getTTL(), expire, start,
|
||||
key.getFootprint(), key.getName(), null);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate the binary image of the prototype SIG RR.
|
||||
*
|
||||
* @param presig
|
||||
* the SIG RR prototype.
|
||||
* @return the RDATA portion of the prototype SIG record. This forms the
|
||||
* first part of the data to be signed.
|
||||
*/
|
||||
private static byte [] generatePreSigRdata(RRSIGRecord presig) {
|
||||
// Generate the binary image;
|
||||
DNSOutput image = new DNSOutput();
|
||||
|
||||
// precalculate some things
|
||||
int start_time = (int) (presig.getTimeSigned().getTime() / 1000);
|
||||
int expire_time = (int) (presig.getExpire().getTime() / 1000);
|
||||
Name signer = presig.getSigner();
|
||||
|
||||
// first write out the partial SIG record (this is the SIG RDATA
|
||||
// minus the actual signature.
|
||||
image.writeU16(presig.getTypeCovered());
|
||||
image.writeU8(presig.getAlgorithm());
|
||||
image.writeU8(presig.getLabels());
|
||||
image.writeU32((int) presig.getOrigTTL());
|
||||
image.writeU32(expire_time);
|
||||
image.writeU32(start_time);
|
||||
image.writeU16(presig.getFootprint());
|
||||
image.writeByteArray(signer.toWireCanonical());
|
||||
|
||||
return image.toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the canonical wire line format of the RRset.
|
||||
*
|
||||
* @param rrset
|
||||
* the RRset to convert.
|
||||
* @param ttl
|
||||
* the TTL to use when canonicalizing -- this is generally the
|
||||
* TTL of the signature if there is a pre-existing signature. If
|
||||
* not it is just the ttl of the rrset itself.
|
||||
* @param labels
|
||||
* the labels field of the signature, or 0.
|
||||
* @return the canonical wire line format of the rrset. This is the second
|
||||
* part of data to be signed.
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
public static byte [] generateCanonicalRRsetData(RRset rrset, long ttl,
|
||||
int labels) {
|
||||
DNSOutput image = new DNSOutput();
|
||||
|
||||
if (ttl == 0) {
|
||||
ttl = rrset.getTTL();
|
||||
}
|
||||
|
||||
Name n = rrset.getName();
|
||||
|
||||
if (labels == 0) {
|
||||
labels = n.labels();
|
||||
} else {
|
||||
// correct for Name()'s conception of label count.
|
||||
labels++;
|
||||
}
|
||||
|
||||
boolean wildcardName = false;
|
||||
|
||||
if (n.labels() != labels) {
|
||||
n = n.wild(n.labels() - labels);
|
||||
wildcardName = true;
|
||||
log.trace("Detected wildcard expansion: " + rrset.getName() +
|
||||
" changed to " + n);
|
||||
}
|
||||
|
||||
// now convert the wire format records in the RRset into a
|
||||
// list of byte arrays.
|
||||
ArrayList<byte []> canonical_rrs = new ArrayList<byte []>();
|
||||
|
||||
for (Iterator i = rrset.rrs(); i.hasNext();) {
|
||||
Record r = (Record) i.next();
|
||||
|
||||
if ((r.getTTL() != ttl) || wildcardName) {
|
||||
// If necessary, we need to create a new record with a new ttl
|
||||
// or ownername.
|
||||
// In the TTL case, this avoids changing the ttl in the
|
||||
// response.
|
||||
r = Record.newRecord(n, r.getType(), r.getDClass(), ttl,
|
||||
r.rdataToWireCanonical());
|
||||
}
|
||||
|
||||
byte [] wire_fmt = r.toWireCanonical();
|
||||
canonical_rrs.add(wire_fmt);
|
||||
}
|
||||
|
||||
// put the records into the correct ordering.
|
||||
// Calculate the offset where the RDATA begins (we have to skip
|
||||
// past the length byte)
|
||||
int offset = rrset.getName().toWireCanonical().length +
|
||||
10;
|
||||
ByteArrayComparator bac = new ByteArrayComparator(offset, false);
|
||||
|
||||
Collections.sort(canonical_rrs, bac);
|
||||
|
||||
for (Iterator<byte []> i = canonical_rrs.iterator(); i.hasNext();) {
|
||||
byte [] wire_fmt_rec = i.next();
|
||||
image.writeByteArray(wire_fmt_rec);
|
||||
}
|
||||
|
||||
return image.toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* Given an RRset and the prototype signature, generate the canonical data
|
||||
* that is to be signed.
|
||||
*
|
||||
* @param rrset
|
||||
* the RRset to be signed.
|
||||
* @param presig
|
||||
* a prototype SIG RR created using the same RRset.
|
||||
* @return a block of data ready to be signed.
|
||||
*/
|
||||
public static byte [] generateSigData(RRset rrset, RRSIGRecord presig)
|
||||
throws IOException {
|
||||
byte [] rrset_data = generateCanonicalRRsetData(rrset,
|
||||
presig.getOrigTTL(), presig.getLabels());
|
||||
|
||||
return generateSigData(rrset_data, presig);
|
||||
}
|
||||
|
||||
/**
|
||||
* Given an RRset and the prototype signature, generate the canonical data
|
||||
* that is to be signed.
|
||||
*
|
||||
* @param rrset_data
|
||||
* the RRset converted into canonical wire line format (as per
|
||||
* the canonicalization rules in RFC 2535).
|
||||
* @param presig
|
||||
* the prototype signature based on the same RRset represented in
|
||||
* <code>rrset_data</code>.
|
||||
* @return a block of data ready to be signed.
|
||||
*/
|
||||
public static byte [] generateSigData(byte [] rrset_data, RRSIGRecord presig)
|
||||
throws IOException {
|
||||
byte [] sig_rdata = generatePreSigRdata(presig);
|
||||
|
||||
ByteArrayOutputStream image = new ByteArrayOutputStream(sig_rdata.length +
|
||||
rrset_data.length);
|
||||
|
||||
image.write(sig_rdata);
|
||||
image.write(rrset_data);
|
||||
|
||||
return image.toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the actual signature and the prototype signature, combine them and
|
||||
* return the fully formed RRSIGRecord.
|
||||
*
|
||||
* @param signature
|
||||
* the cryptographic signature, in DNSSEC format.
|
||||
* @param presig
|
||||
* the prototype RRSIG RR to add the signature to.
|
||||
* @return the fully formed RRSIG RR.
|
||||
*/
|
||||
public static RRSIGRecord generateRRSIG(byte [] signature,
|
||||
RRSIGRecord presig) {
|
||||
return new RRSIGRecord(presig.getName(), presig.getDClass(),
|
||||
presig.getTTL(), presig.getTypeCovered(), presig.getAlgorithm(),
|
||||
presig.getOrigTTL(), presig.getExpire(), presig.getTimeSigned(),
|
||||
presig.getFootprint(), presig.getSigner(), signature);
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts from a RFC 2536 formatted DSA signature to a JCE (ASN.1)
|
||||
* formatted signature.
|
||||
*
|
||||
* <p>
|
||||
* ASN.1 format = ASN1_SEQ . seq_length . ASN1_INT . Rlength . R . ANS1_INT
|
||||
* . Slength . S
|
||||
* </p>
|
||||
*
|
||||
* The integers R and S may have a leading null byte to force the integer
|
||||
* positive.
|
||||
*
|
||||
* @param signature
|
||||
* the RFC 2536 formatted DSA signature.
|
||||
* @return The ASN.1 formatted DSA signature.
|
||||
* @throws SignatureException
|
||||
* if there was something wrong with the RFC 2536 formatted
|
||||
* signature.
|
||||
*/
|
||||
public static byte [] convertDSASignature(byte [] signature)
|
||||
throws SignatureException {
|
||||
if (signature.length != 41) {
|
||||
throw new SignatureException(
|
||||
"RFC 2536 signature not expected length.");
|
||||
}
|
||||
|
||||
byte r_pad = 0;
|
||||
byte s_pad = 0;
|
||||
|
||||
// handle initial null byte padding.
|
||||
if (signature[1] < 0) {
|
||||
r_pad++;
|
||||
}
|
||||
|
||||
if (signature[21] < 0) {
|
||||
s_pad++;
|
||||
}
|
||||
|
||||
// ASN.1 length = R length + S length + (2 + 2 + 2), where each 2
|
||||
// is for a ASN.1 type-length byte pair of which there are three
|
||||
// (SEQ, INT, INT).
|
||||
byte sig_length = (byte) (40 + r_pad + s_pad + 6);
|
||||
|
||||
byte [] sig = new byte[sig_length];
|
||||
byte pos = 0;
|
||||
|
||||
sig[pos++] = ASN1_SEQ;
|
||||
sig[pos++] = (byte) (sig_length - 2); // all but the SEQ type+length.
|
||||
sig[pos++] = ASN1_INT;
|
||||
sig[pos++] = (byte) (20 + r_pad);
|
||||
|
||||
// copy the value of R, leaving a null byte if necessary
|
||||
if (r_pad == 1) {
|
||||
sig[pos++] = 0;
|
||||
}
|
||||
|
||||
System.arraycopy(signature, 1, sig, pos, 20);
|
||||
pos += 20;
|
||||
|
||||
sig[pos++] = ASN1_INT;
|
||||
sig[pos++] = (byte) (20 + s_pad);
|
||||
|
||||
// copy the value of S, leaving a null byte if necessary
|
||||
if (s_pad == 1) {
|
||||
sig[pos++] = 0;
|
||||
}
|
||||
|
||||
System.arraycopy(signature, 21, sig, pos, 20);
|
||||
|
||||
return sig;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts from a JCE (ASN.1) formatted DSA signature to a RFC 2536
|
||||
* compliant signature.
|
||||
*
|
||||
* <p>
|
||||
* rfc2536 format = T . R . S
|
||||
* </p>
|
||||
*
|
||||
* where T is a number between 0 and 8, which is based on the DSA key
|
||||
* length, and R & S are formatted to be exactly 20 bytes each (no leading
|
||||
* null bytes).
|
||||
*
|
||||
* @param params
|
||||
* the DSA parameters associated with the DSA key used to
|
||||
* generate the signature.
|
||||
* @param signature
|
||||
* the ASN.1 formatted DSA signature.
|
||||
* @return a RFC 2536 formatted DSA signature.
|
||||
* @throws SignatureException
|
||||
* if something is wrong with the ASN.1 format.
|
||||
*/
|
||||
public static byte [] convertDSASignature(DSAParams params,
|
||||
byte [] signature) throws SignatureException {
|
||||
if ((signature[0] != ASN1_SEQ) || (signature[2] != ASN1_INT)) {
|
||||
throw new SignatureException(
|
||||
"Invalid ASN.1 signature format: expected SEQ, INT");
|
||||
}
|
||||
|
||||
byte r_pad = (byte) (signature[3] - 20);
|
||||
|
||||
if (signature[24 + r_pad] != ASN1_INT) {
|
||||
throw new SignatureException(
|
||||
"Invalid ASN.1 signature format: expected SEQ, INT, INT");
|
||||
}
|
||||
|
||||
log.trace("(start) ASN.1 DSA Sig:\n" + base64.toString(signature));
|
||||
|
||||
byte s_pad = (byte) (signature[25 + r_pad] - 20);
|
||||
|
||||
byte [] sig = new byte[41]; // all rfc2536 signatures are 41 bytes.
|
||||
|
||||
// Calculate T:
|
||||
sig[0] = (byte) ((params.getP().bitLength() - 512) / 64);
|
||||
|
||||
// copy R value
|
||||
if (r_pad >= 0) {
|
||||
System.arraycopy(signature, 4 + r_pad, sig, 1, 20);
|
||||
} else {
|
||||
// R is shorter than 20 bytes, so right justify the number
|
||||
// (r_pad is negative here, remember?).
|
||||
Arrays.fill(sig, 1, 1 - r_pad, (byte) 0);
|
||||
System.arraycopy(signature, 4, sig, 1 - r_pad, 20 + r_pad);
|
||||
}
|
||||
|
||||
// copy S value
|
||||
if (s_pad >= 0) {
|
||||
System.arraycopy(signature, 26 + r_pad + s_pad, sig, 21, 20);
|
||||
} else {
|
||||
// S is shorter than 20 bytes, so right justify the number
|
||||
// (s_pad is negative here).
|
||||
Arrays.fill(sig, 21, 21 - s_pad, (byte) 0);
|
||||
System.arraycopy(signature, 26 + r_pad, sig, 21 - s_pad, 20 +
|
||||
s_pad);
|
||||
}
|
||||
|
||||
if ((r_pad < 0) || (s_pad < 0)) {
|
||||
log.trace("(finish ***) RFC 2536 DSA Sig:\n" +
|
||||
base64.toString(sig));
|
||||
} else {
|
||||
log.trace("(finish) RFC 2536 DSA Sig:\n" + base64.toString(sig));
|
||||
}
|
||||
|
||||
return sig;
|
||||
}
|
||||
|
||||
/**
|
||||
* This class implements a basic comparator for byte arrays. It is primarily
|
||||
* useful for comparing RDATA portions of DNS records in doing DNSSEC
|
||||
* canonical ordering.
|
||||
*/
|
||||
public static class ByteArrayComparator implements Comparator<byte []> {
|
||||
private int mOffset = 0;
|
||||
private boolean mDebug = false;
|
||||
|
||||
public ByteArrayComparator() {}
|
||||
|
||||
public ByteArrayComparator(int offset, boolean debug) {
|
||||
mOffset = offset;
|
||||
mDebug = debug;
|
||||
}
|
||||
|
||||
public int compare(byte [] b1, byte [] b2) throws ClassCastException {
|
||||
for (int i = mOffset; (i < b1.length) && (i < b2.length); i++) {
|
||||
if (b1[i] != b2[i]) {
|
||||
if (mDebug) {
|
||||
System.out.println("offset " + i +
|
||||
" differs (this is " + (i - mOffset) +
|
||||
" bytes in from our offset.)");
|
||||
}
|
||||
|
||||
return (b1[i] & 0xFF) - (b2[i] & 0xFF);
|
||||
}
|
||||
}
|
||||
|
||||
return b1.length - b2.length;
|
||||
}
|
||||
}
|
||||
}
|
||||
102
src/com/verisign/tat/dnssec/TrustAnchorStore.java
Normal file
102
src/com/verisign/tat/dnssec/TrustAnchorStore.java
Normal file
@@ -0,0 +1,102 @@
|
||||
/***************************** -*- Java -*- ********************************\
|
||||
* *
|
||||
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
|
||||
* *
|
||||
* This software is provided solely in connection with the terms of the *
|
||||
* license agreement. Any other use without the prior express written *
|
||||
* permission of VeriSign is completely prohibited. The software and *
|
||||
* documentation are "Commercial Items", as that term is defined in 48 *
|
||||
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
|
||||
* "Commercial Computer Software Documentation" as such terms are defined *
|
||||
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
|
||||
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
|
||||
* section 227.7202, as applicable. Pursuant to the above and other *
|
||||
* relevant sections of the Code of Federal Regulations, as applicable, *
|
||||
* VeriSign's publications, commercial computer software, and commercial *
|
||||
* computer software documentation are distributed and licensed to United *
|
||||
* States Government end users with only those rights as granted to all *
|
||||
* other end users, according to the terms and conditions contained in the *
|
||||
* license agreement(s) that accompany the products and software *
|
||||
* documentation. *
|
||||
* *
|
||||
\***************************************************************************/
|
||||
|
||||
package com.verisign.tat.dnssec;
|
||||
|
||||
import org.xbill.DNS.*;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public class TrustAnchorStore {
|
||||
private Map<String, SRRset> mMap;
|
||||
|
||||
public TrustAnchorStore() {
|
||||
mMap = null;
|
||||
}
|
||||
|
||||
private String key(Name n, int dclass) {
|
||||
return "T" + dclass + "/" + Util.nameToString(n);
|
||||
}
|
||||
|
||||
public void store(SRRset rrset) {
|
||||
if (mMap == null) {
|
||||
mMap = new HashMap<String, SRRset>();
|
||||
}
|
||||
|
||||
String k = key(rrset.getName(), rrset.getDClass());
|
||||
rrset.setSecurityStatus(SecurityStatus.SECURE);
|
||||
|
||||
mMap.put(k, rrset);
|
||||
}
|
||||
|
||||
private SRRset lookup(String key) {
|
||||
if (mMap == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return mMap.get(key);
|
||||
}
|
||||
|
||||
public SRRset find(Name n, int dclass) {
|
||||
if (mMap == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
while (n.labels() > 0) {
|
||||
String k = key(n, dclass);
|
||||
SRRset r = lookup(k);
|
||||
|
||||
if (r != null) {
|
||||
return r;
|
||||
}
|
||||
|
||||
n = new Name(n, 1);
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
public boolean isBelowTrustAnchor(Name n, int dclass) {
|
||||
return find(n, dclass) != null;
|
||||
}
|
||||
|
||||
public List<String> listTrustAnchors() {
|
||||
List<String> res = new ArrayList<String>();
|
||||
|
||||
for (Map.Entry<String, SRRset> entry : mMap.entrySet()) {
|
||||
for (Iterator<Record> i = entry.getValue().rrs(); i.hasNext();) {
|
||||
DNSKEYRecord r = (DNSKEYRecord) i.next();
|
||||
String key_desc = r.getName().toString() + "/" +
|
||||
DNSSEC.Algorithm.string(r.getAlgorithm()) + "/" +
|
||||
r.getFootprint();
|
||||
res.add(key_desc);
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
}
|
||||
109
src/com/verisign/tat/dnssec/Util.java
Normal file
109
src/com/verisign/tat/dnssec/Util.java
Normal file
@@ -0,0 +1,109 @@
|
||||
/***************************** -*- Java -*- ********************************\
|
||||
* *
|
||||
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
|
||||
* *
|
||||
* This software is provided solely in connection with the terms of the *
|
||||
* license agreement. Any other use without the prior express written *
|
||||
* permission of VeriSign is completely prohibited. The software and *
|
||||
* documentation are "Commercial Items", as that term is defined in 48 *
|
||||
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
|
||||
* "Commercial Computer Software Documentation" as such terms are defined *
|
||||
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
|
||||
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
|
||||
* section 227.7202, as applicable. Pursuant to the above and other *
|
||||
* relevant sections of the Code of Federal Regulations, as applicable, *
|
||||
* VeriSign's publications, commercial computer software, and commercial *
|
||||
* computer software documentation are distributed and licensed to United *
|
||||
* States Government end users with only those rights as granted to all *
|
||||
* other end users, according to the terms and conditions contained in the *
|
||||
* license agreement(s) that accompany the products and software *
|
||||
* documentation. *
|
||||
* *
|
||||
\***************************************************************************/
|
||||
|
||||
package com.verisign.tat.dnssec;
|
||||
|
||||
import org.xbill.DNS.Name;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
|
||||
/**
|
||||
* Some basic utility functions.
|
||||
*/
|
||||
public class Util {
|
||||
/**
|
||||
* Convert a DNS name into a string suitable for use as a cache key.
|
||||
*
|
||||
* @param name The name to convert.
|
||||
* @return A string representing the name. This isn't ever meant to be
|
||||
* converted back into a DNS name.
|
||||
*/
|
||||
public static String nameToString(Name name) {
|
||||
if (name.equals(Name.root)) {
|
||||
return ".";
|
||||
}
|
||||
|
||||
String n = name.toString().toLowerCase();
|
||||
|
||||
if (n.endsWith(".")) {
|
||||
n = n.substring(0, n.length() - 1);
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
public static int parseInt(String s, int def) {
|
||||
if (s == null) {
|
||||
return def;
|
||||
}
|
||||
|
||||
try {
|
||||
return Integer.parseInt(s);
|
||||
} catch (NumberFormatException e) {
|
||||
return def;
|
||||
}
|
||||
}
|
||||
|
||||
public static long parseLong(String s, long def) {
|
||||
if (s == null) {
|
||||
return def;
|
||||
}
|
||||
|
||||
try {
|
||||
return Long.parseLong(s);
|
||||
} catch (NumberFormatException e) {
|
||||
return def;
|
||||
}
|
||||
}
|
||||
|
||||
public static List<ConfigEntry> parseConfigPrefix(Properties config,
|
||||
String prefix) {
|
||||
if (!prefix.endsWith(".")) {
|
||||
prefix = prefix + ".";
|
||||
}
|
||||
|
||||
List<ConfigEntry> res = new ArrayList<ConfigEntry>();
|
||||
|
||||
for (Map.Entry<Object, Object> entry : config.entrySet()) {
|
||||
String key = (String) entry.getKey();
|
||||
|
||||
if (key.startsWith(prefix)) {
|
||||
key = key.substring(prefix.length());
|
||||
res.add(new ConfigEntry(key, (String) entry.getValue()));
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
public static class ConfigEntry {
|
||||
public String key;
|
||||
public String value;
|
||||
|
||||
public ConfigEntry(String key, String value) {
|
||||
this.key = key;
|
||||
this.value = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
653
src/com/verisign/tat/dnssec/ValUtils.java
Normal file
653
src/com/verisign/tat/dnssec/ValUtils.java
Normal file
@@ -0,0 +1,653 @@
|
||||
/***************************** -*- Java -*- ********************************\
|
||||
* *
|
||||
* Copyright (c) 2009 VeriSign, Inc. All rights reserved. *
|
||||
* *
|
||||
* This software is provided solely in connection with the terms of the *
|
||||
* license agreement. Any other use without the prior express written *
|
||||
* permission of VeriSign is completely prohibited. The software and *
|
||||
* documentation are "Commercial Items", as that term is defined in 48 *
|
||||
* C.F.R. section 2.101, consisting of "Commercial Computer Software" and *
|
||||
* "Commercial Computer Software Documentation" as such terms are defined *
|
||||
* in 48 C.F.R. section 252.227-7014(a)(5) and 48 C.F.R. section *
|
||||
* 252.227-7014(a)(1), and used in 48 C.F.R. section 12.212 and 48 C.F.R. *
|
||||
* section 227.7202, as applicable. Pursuant to the above and other *
|
||||
* relevant sections of the Code of Federal Regulations, as applicable, *
|
||||
* VeriSign's publications, commercial computer software, and commercial *
|
||||
* computer software documentation are distributed and licensed to United *
|
||||
* States Government end users with only those rights as granted to all *
|
||||
* other end users, according to the terms and conditions contained in the *
|
||||
* license agreement(s) that accompany the products and software *
|
||||
* documentation. *
|
||||
* *
|
||||
\***************************************************************************/
|
||||
|
||||
package com.verisign.tat.dnssec;
|
||||
|
||||
import org.apache.log4j.Logger;
|
||||
|
||||
import org.xbill.DNS.*;
|
||||
|
||||
import java.security.MessageDigest;
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
|
||||
import java.util.Iterator;
|
||||
|
||||
|
||||
/**
|
||||
* This is a collection of routines encompassing the logic of validating
|
||||
* different message types.
|
||||
*/
|
||||
public class ValUtils {
|
||||
private static Logger st_log = Logger.getLogger(ValUtils.class);
|
||||
private Logger log = Logger.getLogger(this.getClass());
|
||||
|
||||
/** A local copy of the verifier object. */
|
||||
private DnsSecVerifier mVerifier;
|
||||
|
||||
public ValUtils(DnsSecVerifier verifier) {
|
||||
mVerifier = verifier;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a response, classify ANSWER responses into a subtype.
|
||||
*
|
||||
* @param m
|
||||
* The response to classify.
|
||||
*
|
||||
* @return A subtype ranging from UNKNOWN to NAMEERROR.
|
||||
*/
|
||||
public static ResponseType classifyResponse(SMessage m, Name zone) {
|
||||
SRRset [] rrsets;
|
||||
|
||||
// Normal Name Error's are easy to detect -- but don't mistake a CNAME
|
||||
// chain ending in NXDOMAIN.
|
||||
if ((m.getRcode() == Rcode.NXDOMAIN) &&
|
||||
(m.getCount(Section.ANSWER) == 0)) {
|
||||
return ResponseType.NAMEERROR;
|
||||
}
|
||||
|
||||
// If rcode isn't NXDOMAIN or NOERROR, it is a throwaway response.
|
||||
if (m.getRcode() != Rcode.NOERROR) {
|
||||
return ResponseType.THROWAWAY;
|
||||
}
|
||||
|
||||
// Next is REFERRAL. These are distinguished by having:
|
||||
// 1) nothing in the ANSWER section
|
||||
// 2) an NS RRset in the AUTHORITY section that is a strict subdomain of
|
||||
// 'zone' (the presumed queried zone).
|
||||
if ((zone != null) && (m.getCount(Section.ANSWER) == 0) &&
|
||||
(m.getCount(Section.AUTHORITY) > 0)) {
|
||||
rrsets = m.getSectionRRsets(Section.AUTHORITY);
|
||||
|
||||
for (int i = 0; i < rrsets.length; ++i) {
|
||||
if ((rrsets[i].getType() == Type.NS) &&
|
||||
strictSubdomain(rrsets[i].getName(), zone)) {
|
||||
return ResponseType.REFERRAL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Next is NODATA
|
||||
if (m.getCount(Section.ANSWER) == 0) {
|
||||
return ResponseType.NODATA;
|
||||
}
|
||||
|
||||
// We distinguish between CNAME response and other positive/negative
|
||||
// responses because CNAME answers require extra processing.
|
||||
int qtype = m.getQuestion().getType();
|
||||
|
||||
// We distinguish between ANY and CNAME or POSITIVE because ANY
|
||||
// responses are validated differently.
|
||||
if (qtype == Type.ANY) {
|
||||
return ResponseType.ANY;
|
||||
}
|
||||
|
||||
rrsets = m.getSectionRRsets(Section.ANSWER);
|
||||
|
||||
// Note that DNAMEs will be ignored here, unless qtype=DNAME. Unless
|
||||
// qtype=CNAME, this will yield a CNAME response.
|
||||
for (int i = 0; i < rrsets.length; i++) {
|
||||
if (rrsets[i].getType() == qtype) {
|
||||
return ResponseType.POSITIVE;
|
||||
}
|
||||
|
||||
if (rrsets[i].getType() == Type.CNAME) {
|
||||
return ResponseType.CNAME;
|
||||
}
|
||||
}
|
||||
|
||||
st_log.warn("Failed to classify response message:\n" + m);
|
||||
|
||||
return ResponseType.UNKNOWN;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a response, determine the name of the "signer". This is primarily
|
||||
* to determine if the response is, in fact, signed at all, and, if so, what
|
||||
* is the name of the most pertinent keyset.
|
||||
*
|
||||
* @param m
|
||||
* The response to analyze.
|
||||
* @return a signer name, if the response is signed (even partially), or
|
||||
* null if the response isn't signed.
|
||||
*/
|
||||
public Name findSigner(SMessage m) {
|
||||
// FIXME: this used to classify the message, then look in the pertinent
|
||||
// section. Now we just find the first RRSIG in the ANSWER and AUTHORIY
|
||||
// sections.
|
||||
for (int section = Section.ANSWER; section < Section.ADDITIONAL;
|
||||
++section) {
|
||||
SRRset [] rrsets = m.getSectionRRsets(section);
|
||||
|
||||
for (int i = 0; i < rrsets.length; ++i) {
|
||||
Name signerName = rrsets[i].getSignerName();
|
||||
|
||||
if (signerName != null) {
|
||||
return signerName;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a DNSKEY record, generate the DS record from it.
|
||||
*
|
||||
* @param keyrec
|
||||
* the DNSKEY record in question.
|
||||
* @param ds_alg
|
||||
* The DS digest algorithm in use.
|
||||
* @return the corresponding {@link org.xbill.DNS.DSRecord}
|
||||
*/
|
||||
public static byte [] calculateDSHash(DNSKEYRecord keyrec, int ds_alg) {
|
||||
DNSOutput os = new DNSOutput();
|
||||
|
||||
os.writeByteArray(keyrec.getName().toWireCanonical());
|
||||
os.writeByteArray(keyrec.rdataToWireCanonical());
|
||||
|
||||
try {
|
||||
MessageDigest md = null;
|
||||
|
||||
switch (ds_alg) {
|
||||
case DSRecord.SHA1_DIGEST_ID:
|
||||
md = MessageDigest.getInstance("SHA");
|
||||
|
||||
return md.digest(os.toByteArray());
|
||||
|
||||
case DSRecord.SHA256_DIGEST_ID:
|
||||
md = MessageDigest.getInstance("SHA256");
|
||||
|
||||
return md.digest(os.toByteArray());
|
||||
|
||||
default:
|
||||
st_log.warn("Unknown DS algorithm: " + ds_alg);
|
||||
|
||||
return null;
|
||||
}
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
st_log.error("Error using DS algorithm: " + ds_alg, e);
|
||||
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
public static boolean supportsDigestID(int digest_id) {
|
||||
if (digest_id == DSRecord.SHA1_DIGEST_ID) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (digest_id == DSRecord.SHA256_DIGEST_ID) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check to see if a type is a special DNSSEC type.
|
||||
*
|
||||
* @param type
|
||||
* The type.
|
||||
*
|
||||
* @return true if the type is one of the special DNSSEC types.
|
||||
*/
|
||||
public static boolean isDNSSECType(int type) {
|
||||
switch (type) {
|
||||
case Type.DNSKEY:
|
||||
case Type.NSEC:
|
||||
case Type.DS:
|
||||
case Type.RRSIG:
|
||||
case Type.NSEC3:
|
||||
return true;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the security status of a particular RRset. This will only upgrade the
|
||||
* security status.
|
||||
*
|
||||
* @param rrset
|
||||
* The SRRset to update.
|
||||
* @param security
|
||||
* The security status.
|
||||
*/
|
||||
public static void setRRsetSecurity(SRRset rrset, byte security) {
|
||||
if (rrset == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
int cur_sec = rrset.getSecurityStatus();
|
||||
|
||||
if ((cur_sec == SecurityStatus.UNCHECKED) || (security > cur_sec)) {
|
||||
rrset.setSecurityStatus(security);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the security status of a message and all of its RRsets. This will
|
||||
* only upgrade the status of the message (i.e., set to more secure, not
|
||||
* less) and all of the RRsets.
|
||||
*
|
||||
* @param m
|
||||
* @param security
|
||||
* KeyEntry ke;
|
||||
*
|
||||
* SMessage m = response.getSMessage(); SRRset ans_rrset =
|
||||
* m.findAnswerRRset(qname, qtype, qclass);
|
||||
*
|
||||
* ke = verifySRRset(ans_rrset, key_rrset); if
|
||||
* (ans_rrset.getSecurityStatus() != SecurityStatus.SECURE) {
|
||||
* return; } key_rrset = ke.getRRset();
|
||||
*/
|
||||
public static void setMessageSecurity(SMessage m, byte security) {
|
||||
if (m == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
int cur_sec = m.getStatus();
|
||||
|
||||
if ((cur_sec == SecurityStatus.UNCHECKED) || (security > cur_sec)) {
|
||||
m.setStatus(security);
|
||||
}
|
||||
|
||||
for (int section = Section.ANSWER; section <= Section.ADDITIONAL;
|
||||
section++) {
|
||||
SRRset [] rrsets = m.getSectionRRsets(section);
|
||||
|
||||
for (int i = 0; i < rrsets.length; i++) {
|
||||
setRRsetSecurity(rrsets[i], security);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Given an SRRset that is signed by a DNSKEY found in the key_rrset, verify
|
||||
* it. This will return the status (either BOGUS or SECURE) and set that
|
||||
* status in rrset.
|
||||
*
|
||||
* @param rrset
|
||||
* The SRRset to verify.
|
||||
* @param key_rrset
|
||||
* The set of keys to verify against.
|
||||
* @return The status (BOGUS or SECURE).
|
||||
*/
|
||||
public byte verifySRRset(SRRset rrset, SRRset key_rrset) {
|
||||
String rrset_name = rrset.getName() + "/" +
|
||||
Type.string(rrset.getType()) + "/" +
|
||||
DClass.string(rrset.getDClass());
|
||||
|
||||
if (rrset.getSecurityStatus() == SecurityStatus.SECURE) {
|
||||
log.trace("verifySRRset: rrset <" + rrset_name +
|
||||
"> previously found to be SECURE");
|
||||
|
||||
return SecurityStatus.SECURE;
|
||||
}
|
||||
|
||||
byte status = mVerifier.verify(rrset, key_rrset);
|
||||
|
||||
if (status != SecurityStatus.SECURE) {
|
||||
log.debug("verifySRRset: rrset <" + rrset_name +
|
||||
"> found to be BAD");
|
||||
status = SecurityStatus.BOGUS;
|
||||
} else {
|
||||
log.trace("verifySRRset: rrset <" + rrset_name +
|
||||
"> found to be SECURE");
|
||||
}
|
||||
|
||||
rrset.setSecurityStatus(status);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine if a given type map has a given type.
|
||||
*
|
||||
* @param types
|
||||
* The type map from the NSEC record.
|
||||
* @param type
|
||||
* The type to look for.
|
||||
* @return true if the type is present in the type map, false otherwise.
|
||||
*/
|
||||
public static boolean typeMapHasType(int [] types, int type) {
|
||||
for (int i = 0; i < types.length; i++) {
|
||||
if (types[i] == type) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
public static RRSIGRecord rrsetFirstSig(RRset rrset) {
|
||||
for (Iterator i = rrset.sigs(); i.hasNext();) {
|
||||
return (RRSIGRecord) i.next();
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the longest common name between two domain names.
|
||||
*
|
||||
* @param domain1
|
||||
* @param domain2
|
||||
* @return
|
||||
*/
|
||||
public static Name longestCommonName(Name domain1, Name domain2) {
|
||||
if ((domain1 == null) || (domain2 == null)) {
|
||||
return null;
|
||||
}
|
||||
|
||||
// for now, do this in a a fairly brute force way
|
||||
// FIXME: convert this to direct operations on the byte[]
|
||||
int d1_labels = domain1.labels();
|
||||
int d2_labels = domain2.labels();
|
||||
|
||||
int l = (d1_labels < d2_labels) ? d1_labels : d2_labels;
|
||||
|
||||
for (int i = l; i > 0; i--) {
|
||||
Name n1 = new Name(domain1, d1_labels - i);
|
||||
Name n2 = new Name(domain2, d2_labels - i);
|
||||
|
||||
if (n1.equals(n2)) {
|
||||
return n1;
|
||||
}
|
||||
}
|
||||
|
||||
return Name.root;
|
||||
}
|
||||
|
||||
public static boolean strictSubdomain(Name child, Name parent) {
|
||||
int clabels = child.labels();
|
||||
int plabels = parent.labels();
|
||||
|
||||
if (plabels >= clabels) {
|
||||
return false;
|
||||
}
|
||||
|
||||
Name n = new Name(child, clabels - plabels);
|
||||
|
||||
return parent.equals(n);
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine by looking at a signed RRset whether or not the rrset name was
|
||||
* the result of a wildcard expansion.
|
||||
*
|
||||
* @param rrset
|
||||
* The rrset to examine.
|
||||
* @return true if the rrset is a wildcard expansion. This will return false
|
||||
* for all unsigned rrsets.
|
||||
*/
|
||||
public static boolean rrsetIsWildcardExpansion(RRset rrset) {
|
||||
if (rrset == null) {
|
||||
return false;
|
||||
}
|
||||
|
||||
RRSIGRecord rrsig = rrsetFirstSig(rrset);
|
||||
|
||||
if ((rrset.getName().labels() - 1) > rrsig.getLabels()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine by looking at a signed RRset whether or not the RRset name was
|
||||
* the result of a wildcard expansion. If so, return the name of the
|
||||
* generating wildcard.
|
||||
*
|
||||
* @param rrset
|
||||
* The rrset to check.
|
||||
* @return the wildcard name, if the rrset was synthesized from a wildcard.
|
||||
* null if not.
|
||||
*/
|
||||
public static Name rrsetWildcard(RRset rrset) {
|
||||
if (rrset == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
RRSIGRecord rrsig = rrsetFirstSig(rrset);
|
||||
|
||||
// if the RRSIG label count is shorter than the number of actual labels,
|
||||
// then this rrset was synthesized from a wildcard.
|
||||
// Note that the RRSIG label count doesn't count the root label.
|
||||
int label_diff = (rrset.getName().labels() - 1) - rrsig.getLabels();
|
||||
|
||||
if (label_diff > 0) {
|
||||
return rrset.getName().wild(label_diff);
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
public static Name closestEncloser(Name domain, NSECRecord nsec) {
|
||||
Name n1 = longestCommonName(domain, nsec.getName());
|
||||
Name n2 = longestCommonName(domain, nsec.getNext());
|
||||
|
||||
return (n1.labels() > n2.labels()) ? n1 : n2;
|
||||
}
|
||||
|
||||
public static Name nsecWildcard(Name domain, NSECRecord nsec) {
|
||||
try {
|
||||
return new Name("*", closestEncloser(domain, nsec));
|
||||
} catch (TextParseException e) {
|
||||
// this should never happen.
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine if the given NSEC proves a NameError (NXDOMAIN) for a given
|
||||
* qname.
|
||||
*
|
||||
* @param nsec
|
||||
* The NSEC to check.
|
||||
* @param qname
|
||||
* The qname to check against.
|
||||
* @param signerName
|
||||
* The signer name of the NSEC record, which is used as the zone
|
||||
* name, for a more precise (but perhaps more brittle) check for
|
||||
* the last NSEC in a zone.
|
||||
* @return true if the NSEC proves the condition.
|
||||
*/
|
||||
public static boolean nsecProvesNameError(NSECRecord nsec, Name qname,
|
||||
Name signerName) {
|
||||
Name owner = nsec.getName();
|
||||
Name next = nsec.getNext();
|
||||
|
||||
// If NSEC owner == qname, then this NSEC proves that qname exists.
|
||||
if (qname.equals(owner)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// If NSEC is a parent of qname, we need to check the type map
|
||||
// If the parent name has a DNAME or is a delegation point, then this
|
||||
// NSEC is being misused.
|
||||
boolean hasBadType = typeMapHasType(nsec.getTypes(), Type.DNAME) ||
|
||||
(typeMapHasType(nsec.getTypes(), Type.NS) &&
|
||||
!typeMapHasType(nsec.getTypes(), Type.SOA));
|
||||
|
||||
if (qname.subdomain(owner) && hasBadType) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (((qname.compareTo(owner) > 0) && (qname.compareTo(next) < 0)) ||
|
||||
signerName.equals(next)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine if a NSEC record proves the non-existence of a wildcard that
|
||||
* could have produced qname.
|
||||
*
|
||||
* @param nsec
|
||||
* The nsec to check.
|
||||
* @param qname
|
||||
* The qname to check against.
|
||||
* @param signerName
|
||||
* The signer name for the NSEC rrset, used as the zone name.
|
||||
* @return true if the NSEC proves the condition.
|
||||
*/
|
||||
public static boolean nsecProvesNoWC(NSECRecord nsec, Name qname,
|
||||
Name signerName) {
|
||||
Name owner = nsec.getName();
|
||||
Name next = nsec.getNext();
|
||||
|
||||
int qname_labels = qname.labels();
|
||||
int signer_labels = signerName.labels();
|
||||
|
||||
for (int i = qname_labels - signer_labels; i > 0; i--) {
|
||||
Name wc_name = qname.wild(i);
|
||||
|
||||
if ((wc_name.compareTo(owner) > 0) &&
|
||||
((wc_name.compareTo(next) < 0) || signerName.equals(next))) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine if a NSEC proves the NOERROR/NODATA conditions. This will also
|
||||
* handle the empty non-terminal (ENT) case and partially handle the
|
||||
* wildcard case. If the ownername of 'nsec' is a wildcard, the validator
|
||||
* must still be provided proof that qname did not directly exist and that
|
||||
* the wildcard is, in fact, *.closest_encloser.
|
||||
*
|
||||
* @param nsec
|
||||
* The NSEC to check
|
||||
* @param qname
|
||||
* The query name to check against.
|
||||
* @param qtype
|
||||
* The query type to check against.
|
||||
* @return true if the NSEC proves the condition.
|
||||
*/
|
||||
public static boolean nsecProvesNodata(NSECRecord nsec, Name qname,
|
||||
int qtype) {
|
||||
if (!nsec.getName().equals(qname)) {
|
||||
// wildcard checking.
|
||||
|
||||
// If this is a wildcard NSEC, make sure that a) it was possible to
|
||||
// have
|
||||
// generated qname from the wildcard and b) the type map does not
|
||||
// contain qtype. Note that this does NOT prove that this wildcard
|
||||
// was
|
||||
// the applicable wildcard.
|
||||
if (nsec.getName().isWild()) {
|
||||
// the is the purported closest encloser.
|
||||
Name ce = new Name(nsec.getName(), 1);
|
||||
|
||||
// The qname must be a strict subdomain of the closest encloser,
|
||||
// and
|
||||
// the qtype must be absent from the type map.
|
||||
if (!strictSubdomain(qname, ce) ||
|
||||
typeMapHasType(nsec.getTypes(), qtype)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// empty-non-terminal checking.
|
||||
|
||||
// If the nsec is proving that qname is an ENT, the nsec owner will
|
||||
// be
|
||||
// less than qname, and the next name will be a child domain of the
|
||||
// qname.
|
||||
if (strictSubdomain(nsec.getNext(), qname) &&
|
||||
(qname.compareTo(nsec.getName()) > 0)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Otherwise, this NSEC does not prove ENT, so it does not prove
|
||||
// NODATA.
|
||||
return false;
|
||||
}
|
||||
|
||||
// If the qtype exists, then we should have gotten it.
|
||||
if (typeMapHasType(nsec.getTypes(), qtype)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// if the name is a CNAME node, then we should have gotten the CNAME
|
||||
if (typeMapHasType(nsec.getTypes(), Type.CNAME)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// If an NS set exists at this name, and NOT a SOA (so this is a zone
|
||||
// cut,
|
||||
// not a zone apex), then we should have gotten a referral (or we just
|
||||
// got
|
||||
// the wrong NSEC).
|
||||
if (typeMapHasType(nsec.getTypes(), Type.NS) &&
|
||||
!typeMapHasType(nsec.getTypes(), Type.SOA)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
public static byte nsecProvesNoDS(NSECRecord nsec, Name qname) {
|
||||
// Could check to make sure the qname is a subdomain of nsec
|
||||
int [] types = nsec.getTypes();
|
||||
|
||||
if (typeMapHasType(types, Type.SOA) || typeMapHasType(types, Type.DS)) {
|
||||
// SOA present means that this is the NSEC from the child, not the
|
||||
// parent (so it is the wrong one)
|
||||
// DS present means that there should have been a positive response
|
||||
// to
|
||||
// the DS query, so there is something wrong.
|
||||
return SecurityStatus.BOGUS;
|
||||
}
|
||||
|
||||
if (!typeMapHasType(types, Type.NS)) {
|
||||
// If there is no NS at this point at all, then this doesn't prove
|
||||
// anything one way or the other.
|
||||
return SecurityStatus.INSECURE;
|
||||
}
|
||||
|
||||
// Otherwise, this proves no DS.
|
||||
return SecurityStatus.SECURE;
|
||||
}
|
||||
|
||||
// These are response subtypes. They are necessary for determining the
|
||||
// validation strategy. They have no bearing on the iterative resolution
|
||||
// algorithm, so they are confined here.
|
||||
public enum ResponseType {UNTYPED, UNKNOWN, POSITIVE, CNAME, NODATA,
|
||||
NAMEERROR, ANY, REFERRAL,
|
||||
// a referral response
|
||||
THROWAWAY;
|
||||
// a throwaway response (i.e., an error)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user